Metamath Proof Explorer


Theorem sub4

Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007)

Ref Expression
Assertion sub4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴𝐵 ) − ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) − ( 𝐵𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 addcom ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
2 1 ad2ant2lr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
3 2 oveq2d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐷 ) − ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) )
4 subadd4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴𝐵 ) − ( 𝐶𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐵 + 𝐶 ) ) )
5 subadd4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴𝐶 ) − ( 𝐵𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) )
6 5 an4s ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴𝐶 ) − ( 𝐵𝐷 ) ) = ( ( 𝐴 + 𝐷 ) − ( 𝐶 + 𝐵 ) ) )
7 3 4 6 3eqtr4d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴𝐵 ) − ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) − ( 𝐵𝐷 ) ) )