Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | subadd23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) | |
2 | addsubass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) | |
3 | 1 2 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) |
4 | 3 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) |