Metamath Proof Explorer


Theorem subadd23

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion subadd23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 addsub ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( ( 𝐴𝐵 ) + 𝐶 ) )
2 addsubass ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )
3 1 2 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )
4 3 3com23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )