Metamath Proof Explorer


Theorem subaddeqd

Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subaddeqd.a ( 𝜑𝐴 ∈ ℂ )
subaddeqd.b ( 𝜑𝐵 ∈ ℂ )
subaddeqd.c ( 𝜑𝐶 ∈ ℂ )
subaddeqd.d ( 𝜑𝐷 ∈ ℂ )
subaddeqd.1 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
Assertion subaddeqd ( 𝜑 → ( 𝐴𝐷 ) = ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 subaddeqd.a ( 𝜑𝐴 ∈ ℂ )
2 subaddeqd.b ( 𝜑𝐵 ∈ ℂ )
3 subaddeqd.c ( 𝜑𝐶 ∈ ℂ )
4 subaddeqd.d ( 𝜑𝐷 ∈ ℂ )
5 subaddeqd.1 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
6 5 oveq1d ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) )
7 3 4 addcomd ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) )
8 7 oveq1d ( 𝜑 → ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) )
9 6 8 eqtrd ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) )
10 1 4 2 pnpcan2d ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐴𝐷 ) )
11 4 3 2 pnpcand ( 𝜑 → ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐶𝐵 ) )
12 9 10 11 3eqtr3d ( 𝜑 → ( 𝐴𝐷 ) = ( 𝐶𝐵 ) )