Step |
Hyp |
Ref |
Expression |
1 |
|
subaddeqd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
subaddeqd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
subaddeqd.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
subaddeqd.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
subaddeqd.1 |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) ) |
7 |
3 4
|
addcomd |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
10 |
1 4 2
|
pnpcan2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐴 − 𝐷 ) ) |
11 |
4 3 2
|
pnpcand |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
12 |
9 10 11
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 − 𝐷 ) = ( 𝐶 − 𝐵 ) ) |