| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subaddeqd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | subaddeqd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | subaddeqd.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | subaddeqd.d | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | subaddeqd.1 | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  −  ( 𝐷  +  𝐵 ) )  =  ( ( 𝐶  +  𝐷 )  −  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 7 | 3 4 | addcomd | ⊢ ( 𝜑  →  ( 𝐶  +  𝐷 )  =  ( 𝐷  +  𝐶 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐷 )  −  ( 𝐷  +  𝐵 ) )  =  ( ( 𝐷  +  𝐶 )  −  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 9 | 6 8 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  −  ( 𝐷  +  𝐵 ) )  =  ( ( 𝐷  +  𝐶 )  −  ( 𝐷  +  𝐵 ) ) ) | 
						
							| 10 | 1 4 2 | pnpcan2d | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  −  ( 𝐷  +  𝐵 ) )  =  ( 𝐴  −  𝐷 ) ) | 
						
							| 11 | 4 3 2 | pnpcand | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐶 )  −  ( 𝐷  +  𝐵 ) )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 12 | 9 10 11 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐴  −  𝐷 )  =  ( 𝐶  −  𝐵 ) ) |