Metamath Proof Explorer


Theorem subaddrii

Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006)

Ref Expression
Hypotheses negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
subaddri.4 ( 𝐵 + 𝐶 ) = 𝐴
Assertion subaddrii ( 𝐴𝐵 ) = 𝐶

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 pncan3i.2 𝐵 ∈ ℂ
3 subadd.3 𝐶 ∈ ℂ
4 subaddri.4 ( 𝐵 + 𝐶 ) = 𝐴
5 1 2 3 subaddi ( ( 𝐴𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 )
6 4 5 mpbir ( 𝐴𝐵 ) = 𝐶