Metamath Proof Explorer
Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006)
|
|
Ref |
Expression |
|
Hypotheses |
negidi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
pncan3i.2 |
⊢ 𝐵 ∈ ℂ |
|
|
subadd.3 |
⊢ 𝐶 ∈ ℂ |
|
|
subaddri.4 |
⊢ ( 𝐵 + 𝐶 ) = 𝐴 |
|
Assertion |
subaddrii |
⊢ ( 𝐴 − 𝐵 ) = 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negidi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
pncan3i.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
subadd.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
subaddri.4 |
⊢ ( 𝐵 + 𝐶 ) = 𝐴 |
5 |
1 2 3
|
subaddi |
⊢ ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) |
6 |
4 5
|
mpbir |
⊢ ( 𝐴 − 𝐵 ) = 𝐶 |