Step |
Hyp |
Ref |
Expression |
1 |
|
subsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 -s 𝐵 ) = 𝐶 ↔ ( 𝐴 +s ( -us ‘ 𝐵 ) ) = 𝐶 ) ) |
4 |
|
simpl |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
6 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐵 ) ∈ No ) |
8 |
4 5 7
|
adds32d |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = ( ( 𝐵 +s ( -us ‘ 𝐵 ) ) +s 𝐶 ) ) |
9 |
|
negsid |
⊢ ( 𝐵 ∈ No → ( 𝐵 +s ( -us ‘ 𝐵 ) ) = 0s ) |
10 |
9
|
adantr |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s ( -us ‘ 𝐵 ) ) = 0s ) |
11 |
10
|
oveq1d |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s ( -us ‘ 𝐵 ) ) +s 𝐶 ) = ( 0s +s 𝐶 ) ) |
12 |
|
addslid |
⊢ ( 𝐶 ∈ No → ( 0s +s 𝐶 ) = 𝐶 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 0s +s 𝐶 ) = 𝐶 ) |
14 |
8 11 13
|
3eqtrd |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = 𝐶 ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = 𝐶 ) |
16 |
15
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ↔ 𝐶 = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) ) |
17 |
|
eqcom |
⊢ ( 𝐶 = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ↔ ( 𝐴 +s ( -us ‘ 𝐵 ) ) = 𝐶 ) |
18 |
16 17
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ↔ ( 𝐴 +s ( -us ‘ 𝐵 ) ) = 𝐶 ) ) |
19 |
|
addscl |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
21 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
22 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
23 |
22
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐵 ) ∈ No ) |
24 |
20 21 23
|
addscan2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐵 ) ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ↔ ( 𝐵 +s 𝐶 ) = 𝐴 ) ) |
25 |
3 18 24
|
3bitr2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 -s 𝐵 ) = 𝐶 ↔ ( 𝐵 +s 𝐶 ) = 𝐴 ) ) |