Step |
Hyp |
Ref |
Expression |
1 |
|
subbascn.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
subbascn.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
subbascn.3 |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) |
4 |
|
subbascn.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
5 |
1 3 4
|
tgcn |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐵 ∈ 𝑉 ) |
7 |
|
ssfii |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( fi ‘ 𝐵 ) ) |
8 |
|
ssralv |
⊢ ( 𝐵 ⊆ ( fi ‘ 𝐵 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
9 |
6 7 8
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
|
elfi |
⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 ) ) |
12 |
10 6 11
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 ) ) |
13 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑥 = ∩ 𝑧 ) |
14 |
13
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ∩ 𝑧 ) ) |
15 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → Fun 𝐹 ) |
17 |
13 10
|
eqeltrrdi |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑧 ∈ V ) |
18 |
|
intex |
⊢ ( 𝑧 ≠ ∅ ↔ ∩ 𝑧 ∈ V ) |
19 |
17 18
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ≠ ∅ ) |
20 |
|
intpreima |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ≠ ∅ ) → ( ◡ 𝐹 “ ∩ 𝑧 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
21 |
16 19 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ∩ 𝑧 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
22 |
14 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
23 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
26 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
27 |
26
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ Fin ) |
28 |
26
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ 𝒫 𝐵 ) |
29 |
28
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ⊆ 𝐵 ) |
30 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
31 |
|
ssralv |
⊢ ( 𝑧 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
32 |
29 30 31
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
33 |
|
iinopn |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
34 |
25 27 19 32 33
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
35 |
22 34
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
36 |
35
|
3exp2 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) → ( 𝑥 = ∩ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) ) |
37 |
36
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
38 |
12 37
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
39 |
38
|
com23 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( 𝑥 ∈ ( fi ‘ 𝐵 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
40 |
39
|
ralrimdv |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑥 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
41 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑥 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
43 |
42
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
44 |
40 43
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
45 |
9 44
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
46 |
45
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
47 |
5 46
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |