Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
3 |
1 2
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ) ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
6 |
|
addsubeq4 |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ) ) |
7 |
1 2 2 5 6
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ) ) |
8 |
|
addcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
9 |
4 7 8
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |