Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
3 |
|
subcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
5 |
|
subadd2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 − 𝐶 ) ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ) ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ) ) |
7 |
|
npcan |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
10 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
11 |
9 10
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ↔ 𝐴 = 𝐵 ) ) |
12 |
6 11
|
bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |