Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| subcan2d.4 | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) | ||
| Assertion | subcan2d | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subcan2d.4 | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) | |
| 5 | subcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |