Step |
Hyp |
Ref |
Expression |
1 |
|
subccat.1 |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
2 |
|
subccat.j |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
3 |
|
subccatid.1 |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
4 |
|
subccatid.2 |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
subcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
6 |
1 2 3 4
|
subccatid |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ V ) |
11 |
7 9 5 10
|
fvmptd |
⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) = ( 1 ‘ 𝑋 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |