Metamath Proof Explorer


Theorem subcidcl

Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcidcl.j ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
subcidcl.2 ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
subcidcl.x ( 𝜑𝑋𝑆 )
subcidcl.1 1 = ( Id ‘ 𝐶 )
Assertion subcidcl ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) )

Proof

Step Hyp Ref Expression
1 subcidcl.j ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
2 subcidcl.2 ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
3 subcidcl.x ( 𝜑𝑋𝑆 )
4 subcidcl.1 1 = ( Id ‘ 𝐶 )
5 fveq2 ( 𝑥 = 𝑋 → ( 1𝑥 ) = ( 1𝑋 ) )
6 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
7 6 6 oveq12d ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑥 ) = ( 𝑋 𝐽 𝑋 ) )
8 5 7 eleq12d ( 𝑥 = 𝑋 → ( ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( 1𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) ) )
9 eqid ( Homf𝐶 ) = ( Homf𝐶 )
10 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
11 subcrcl ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat )
12 1 11 syl ( 𝜑𝐶 ∈ Cat )
13 9 4 10 12 2 issubc2 ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽cat ( Homf𝐶 ) ∧ ∀ 𝑥𝑆 ( ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) )
14 1 13 mpbid ( 𝜑 → ( 𝐽cat ( Homf𝐶 ) ∧ ∀ 𝑥𝑆 ( ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) )
15 simpl ( ( ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) )
16 15 ralimi ( ∀ 𝑥𝑆 ( ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ∀ 𝑥𝑆 ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) )
17 14 16 simpl2im ( 𝜑 → ∀ 𝑥𝑆 ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) )
18 8 17 3 rspcdva ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) )