Step |
Hyp |
Ref |
Expression |
1 |
|
subcidcl.j |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
2 |
|
subcidcl.2 |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
3 |
|
subcidcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
4 |
|
subcidcl.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
7 |
6 6
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑥 ) = ( 𝑋 𝐽 𝑋 ) ) |
8 |
5 7
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) ) ) |
9 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
11 |
|
subcrcl |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
13 |
9 4 10 12 2
|
issubc2 |
⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
14 |
1 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
15 |
|
simpl |
⊢ ( ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
16 |
15
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
17 |
14 16
|
simpl2im |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
18 |
8 17 3
|
rspcdva |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) ) |