| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subcidcl.j |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 2 |
|
subcidcl.2 |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 3 |
|
subcidcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 4 |
|
subcidcl.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
| 6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 7 |
6 6
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑥 ) = ( 𝑋 𝐽 𝑋 ) ) |
| 8 |
5 7
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) ) ) |
| 9 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 11 |
|
subcrcl |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 |
9 4 10 12 2
|
issubc2 |
⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 14 |
1 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 15 |
|
simpl |
⊢ ( ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 16 |
15
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 17 |
14 16
|
simpl2im |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 18 |
8 17 3
|
rspcdva |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐽 𝑋 ) ) |