Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |