Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
Assertion | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |