Step |
Hyp |
Ref |
Expression |
1 |
|
subgabl.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
|
eqidd |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
5 |
3 4
|
mndidcl |
⊢ ( 𝐻 ∈ Mnd → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
6 |
|
n0i |
⊢ ( ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) → ¬ ( Base ‘ 𝐻 ) = ∅ ) |
7 |
5 6
|
syl |
⊢ ( 𝐻 ∈ Mnd → ¬ ( Base ‘ 𝐻 ) = ∅ ) |
8 |
|
reldmress |
⊢ Rel dom ↾s |
9 |
8
|
ovprc2 |
⊢ ( ¬ 𝑆 ∈ V → ( 𝐺 ↾s 𝑆 ) = ∅ ) |
10 |
1 9
|
eqtrid |
⊢ ( ¬ 𝑆 ∈ V → 𝐻 = ∅ ) |
11 |
10
|
fveq2d |
⊢ ( ¬ 𝑆 ∈ V → ( Base ‘ 𝐻 ) = ( Base ‘ ∅ ) ) |
12 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
13 |
11 12
|
eqtr4di |
⊢ ( ¬ 𝑆 ∈ V → ( Base ‘ 𝐻 ) = ∅ ) |
14 |
7 13
|
nsyl2 |
⊢ ( 𝐻 ∈ Mnd → 𝑆 ∈ V ) |
15 |
14
|
adantl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝑆 ∈ V ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
17 |
1 16
|
ressplusg |
⊢ ( 𝑆 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
19 |
|
simpr |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ Mnd ) |
20 |
|
simpl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐺 ∈ CMnd ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
22 |
1 21
|
ressbasss |
⊢ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝐺 ) |
23 |
22
|
sseli |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐻 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
24 |
22
|
sseli |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐻 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
25 |
21 16
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
26 |
20 23 24 25
|
syl3an |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
27 |
2 18 19 26
|
iscmnd |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |