Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subcncf.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
subcncf.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
Assertion | subcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcncf.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
2 | subcncf.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
3 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
4 | 3 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
5 | 4 | a1i | ⊢ ( 𝜑 → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
6 | 3 5 1 2 | cncfmpt2f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |