| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcncff.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 2 |  | subcncff.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 3 |  | cncfrss | ⊢ ( 𝐹  ∈  ( 𝑋 –cn→ ℂ )  →  𝑋  ⊆  ℂ ) | 
						
							| 4 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 5 | 4 | ssex | ⊢ ( 𝑋  ⊆  ℂ  →  𝑋  ∈  V ) | 
						
							| 6 | 1 3 5 | 3syl | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 7 |  | cncff | ⊢ ( 𝐹  ∈  ( 𝑋 –cn→ ℂ )  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 10 |  | cncff | ⊢ ( 𝐺  ∈  ( 𝑋 –cn→ ℂ )  →  𝐺 : 𝑋 ⟶ ℂ ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑋 ⟶ ℂ ) | 
						
							| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 13 | 8 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 14 | 11 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 15 | 6 9 12 13 14 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 13 1 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 17 | 14 2 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 18 | 16 17 | subcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 19 | 15 18 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  ∈  ( 𝑋 –cn→ ℂ ) ) |