Metamath Proof Explorer


Theorem subcss1

Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcss1.1 ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
subcss1.2 ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
subcss1.b 𝐵 = ( Base ‘ 𝐶 )
Assertion subcss1 ( 𝜑𝑆𝐵 )

Proof

Step Hyp Ref Expression
1 subcss1.1 ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
2 subcss1.2 ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
3 subcss1.b 𝐵 = ( Base ‘ 𝐶 )
4 eqid ( Homf𝐶 ) = ( Homf𝐶 )
5 4 3 homffn ( Homf𝐶 ) Fn ( 𝐵 × 𝐵 )
6 5 a1i ( 𝜑 → ( Homf𝐶 ) Fn ( 𝐵 × 𝐵 ) )
7 1 4 subcssc ( 𝜑𝐽cat ( Homf𝐶 ) )
8 2 6 7 ssc1 ( 𝜑𝑆𝐵 )