Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subcss1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
subcss1.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | ||
subcss1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
Assertion | subcss1 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcss1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
2 | subcss1.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | |
3 | subcss1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
4 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
5 | 4 3 | homffn | ⊢ ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) |
6 | 5 | a1i | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
7 | 1 4 | subcssc | ⊢ ( 𝜑 → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
8 | 2 6 7 | ssc1 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |