| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcss1.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( Subcat ‘ 𝐶 ) ) | 
						
							| 2 |  | subcss1.2 | ⊢ ( 𝜑  →  𝐽  Fn  ( 𝑆  ×  𝑆 ) ) | 
						
							| 3 |  | subcss2.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 |  | subcss2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 5 |  | subcss2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 ) | 
						
							| 7 | 1 6 | subcssc | ⊢ ( 𝜑  →  𝐽  ⊆cat  ( Homf  ‘ 𝐶 ) ) | 
						
							| 8 | 2 7 4 5 | ssc2 | ⊢ ( 𝜑  →  ( 𝑋 𝐽 𝑌 )  ⊆  ( 𝑋 ( Homf  ‘ 𝐶 ) 𝑌 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 10 | 1 2 9 | subcss1 | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝐶 ) ) | 
						
							| 11 | 10 4 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 | 10 5 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 6 9 3 11 12 | homfval | ⊢ ( 𝜑  →  ( 𝑋 ( Homf  ‘ 𝐶 ) 𝑌 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 14 | 8 13 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑋 𝐽 𝑌 )  ⊆  ( 𝑋 𝐻 𝑌 ) ) |