Metamath Proof Explorer


Theorem subdi

Description: Distribution of multiplication over subtraction. Theorem I.5 of Apostol p. 18. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion subdi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ )
2 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ )
3 subcl ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵𝐶 ) ∈ ℂ )
4 3 3adant1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵𝐶 ) ∈ ℂ )
5 1 2 4 adddid ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐶 + ( 𝐵𝐶 ) ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵𝐶 ) ) ) )
6 pncan3 ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 + ( 𝐵𝐶 ) ) = 𝐵 )
7 6 ancoms ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 + ( 𝐵𝐶 ) ) = 𝐵 )
8 7 3adant1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 + ( 𝐵𝐶 ) ) = 𝐵 )
9 8 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐶 + ( 𝐵𝐶 ) ) ) = ( 𝐴 · 𝐵 ) )
10 5 9 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵𝐶 ) ) ) = ( 𝐴 · 𝐵 ) )
11 mulcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ )
12 11 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ )
13 mulcl ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ )
14 13 3adant2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ )
15 mulcl ( ( 𝐴 ∈ ℂ ∧ ( 𝐵𝐶 ) ∈ ℂ ) → ( 𝐴 · ( 𝐵𝐶 ) ) ∈ ℂ )
16 3 15 sylan2 ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐴 · ( 𝐵𝐶 ) ) ∈ ℂ )
17 16 3impb ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵𝐶 ) ) ∈ ℂ )
18 12 14 17 subaddd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = ( 𝐴 · ( 𝐵𝐶 ) ) ↔ ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵𝐶 ) ) ) = ( 𝐴 · 𝐵 ) ) )
19 10 18 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = ( 𝐴 · ( 𝐵𝐶 ) ) )
20 19 eqcomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) )