| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 3 |
|
subcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 5 |
1 2 4
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐶 + ( 𝐵 − 𝐶 ) ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵 − 𝐶 ) ) ) ) |
| 6 |
|
pncan3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 + ( 𝐵 − 𝐶 ) ) = 𝐵 ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 + ( 𝐵 − 𝐶 ) ) = 𝐵 ) |
| 8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 + ( 𝐵 − 𝐶 ) ) = 𝐵 ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐶 + ( 𝐵 − 𝐶 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 10 |
5 9
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵 − 𝐶 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 11 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 13 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 15 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 − 𝐶 ) ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 16 |
3 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 17 |
16
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 18 |
12 14 17
|
subaddd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 − 𝐶 ) ) ↔ ( ( 𝐴 · 𝐶 ) + ( 𝐴 · ( 𝐵 − 𝐶 ) ) ) = ( 𝐴 · 𝐵 ) ) ) |
| 19 |
10 18
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 − 𝐶 ) ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) |