Metamath Proof Explorer
Description: Distribution of multiplication over subtraction. Theorem I.5 of
Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
mulm1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
mulnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
subdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
|
Assertion |
subdid |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulm1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
mulnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
subdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
subdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) |