Metamath Proof Explorer


Theorem subdid

Description: Distribution of multiplication over subtraction. Theorem I.5 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1 ( 𝜑𝐴 ∈ ℂ )
mulnegd.2 ( 𝜑𝐵 ∈ ℂ )
subdid.3 ( 𝜑𝐶 ∈ ℂ )
Assertion subdid ( 𝜑 → ( 𝐴 · ( 𝐵𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 mulm1d.1 ( 𝜑𝐴 ∈ ℂ )
2 mulnegd.2 ( 𝜑𝐵 ∈ ℂ )
3 subdid.3 ( 𝜑𝐶 ∈ ℂ )
4 subdi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 · ( 𝐵𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) )