Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 − 𝐵 ) = 0 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 3 | 2 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ↔ ( 𝐴 − 𝐵 ) = 0 ) ) |
| 4 | subcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 5 | 4 | 3anidm23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 6 | 3 5 | bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |