Metamath Proof Explorer


Theorem subeq0ad

Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 . Generalization of subeq0d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
Assertion subeq0ad ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subeq0 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )