Metamath Proof Explorer


Theorem subeq0bd

Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad . Converse of subeq0d . Contrapositive of subne0ad . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses subeq0bd.1 ( 𝜑𝐴 ∈ ℂ )
subeq0bd.2 ( 𝜑𝐴 = 𝐵 )
Assertion subeq0bd ( 𝜑 → ( 𝐴𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 subeq0bd.1 ( 𝜑𝐴 ∈ ℂ )
2 subeq0bd.2 ( 𝜑𝐴 = 𝐵 )
3 2 1 eqeltrrd ( 𝜑𝐵 ∈ ℂ )
4 1 3 subeq0ad ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
5 2 4 mpbird ( 𝜑 → ( 𝐴𝐵 ) = 0 )