Metamath Proof Explorer


Theorem subeqxfrd

Description: Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subeqxfrd.a ( 𝜑𝐴 ∈ ℂ )
subeqxfrd.b ( 𝜑𝐵 ∈ ℂ )
subeqxfrd.c ( 𝜑𝐶 ∈ ℂ )
subeqxfrd.d ( 𝜑𝐷 ∈ ℂ )
subeqxfrd.1 ( 𝜑 → ( 𝐴𝐵 ) = ( 𝐶𝐷 ) )
Assertion subeqxfrd ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 subeqxfrd.a ( 𝜑𝐴 ∈ ℂ )
2 subeqxfrd.b ( 𝜑𝐵 ∈ ℂ )
3 subeqxfrd.c ( 𝜑𝐶 ∈ ℂ )
4 subeqxfrd.d ( 𝜑𝐷 ∈ ℂ )
5 subeqxfrd.1 ( 𝜑 → ( 𝐴𝐵 ) = ( 𝐶𝐷 ) )
6 5 oveq1d ( 𝜑 → ( ( 𝐴𝐵 ) + ( 𝐵𝐶 ) ) = ( ( 𝐶𝐷 ) + ( 𝐵𝐶 ) ) )
7 1 2 3 npncand ( 𝜑 → ( ( 𝐴𝐵 ) + ( 𝐵𝐶 ) ) = ( 𝐴𝐶 ) )
8 3 4 2 npncan3d ( 𝜑 → ( ( 𝐶𝐷 ) + ( 𝐵𝐶 ) ) = ( 𝐵𝐷 ) )
9 6 7 8 3eqtr3d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )