Description: Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subeqxfrd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subeqxfrd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subeqxfrd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| subeqxfrd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| subeqxfrd.1 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) | ||
| Assertion | subeqxfrd | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subeqxfrd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subeqxfrd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subeqxfrd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subeqxfrd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | subeqxfrd.1 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐶 ) ) = ( ( 𝐶 − 𝐷 ) + ( 𝐵 − 𝐶 ) ) ) | 
| 7 | 1 2 3 | npncand | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐶 ) ) = ( 𝐴 − 𝐶 ) ) | 
| 8 | 3 4 2 | npncan3d | ⊢ ( 𝜑 → ( ( 𝐶 − 𝐷 ) + ( 𝐵 − 𝐶 ) ) = ( 𝐵 − 𝐷 ) ) | 
| 9 | 6 7 8 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐷 ) ) |