Metamath Proof Explorer
		
		
		
		Description:  A subtraction law:  Exchanging the subtrahend and the result of the
       subtraction.  (Contributed by BJ, 6-Jun-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | addlsub.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | addlsub.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | addlsub.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
				
					|  | Assertion | subexsub | ⊢  ( 𝜑  →  ( 𝐴  =  ( 𝐶  −  𝐵 )  ↔  𝐵  =  ( 𝐶  −  𝐴 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addlsub.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | addlsub.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | addlsub.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 | 1 2 3 | addlsub | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  =  𝐶  ↔  𝐴  =  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 5 | 1 2 3 | addrsub | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  =  𝐶  ↔  𝐵  =  ( 𝐶  −  𝐴 ) ) ) | 
						
							| 6 | 4 5 | bitr3d | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝐶  −  𝐵 )  ↔  𝐵  =  ( 𝐶  −  𝐴 ) ) ) |