Description: The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | ||
Assertion | subfac0 | ⊢ ( 𝑆 ‘ 0 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
2 | subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | |
3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
4 | 1 2 | subfacval | ⊢ ( 0 ∈ ℕ0 → ( 𝑆 ‘ 0 ) = ( 𝐷 ‘ ( 1 ... 0 ) ) ) |
5 | 3 4 | ax-mp | ⊢ ( 𝑆 ‘ 0 ) = ( 𝐷 ‘ ( 1 ... 0 ) ) |
6 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
7 | 6 | fveq2i | ⊢ ( 𝐷 ‘ ( 1 ... 0 ) ) = ( 𝐷 ‘ ∅ ) |
8 | 1 | derang0 | ⊢ ( 𝐷 ‘ ∅ ) = 1 |
9 | 5 7 8 | 3eqtri | ⊢ ( 𝑆 ‘ 0 ) = 1 |