Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
1 2
|
subfacval |
⊢ ( 1 ∈ ℕ0 → ( 𝑆 ‘ 1 ) = ( 𝐷 ‘ ( 1 ... 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝑆 ‘ 1 ) = ( 𝐷 ‘ ( 1 ... 1 ) ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
8 |
6 7
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
9 |
8
|
fveq2i |
⊢ ( 𝐷 ‘ ( 1 ... 1 ) ) = ( 𝐷 ‘ { 1 } ) |
10 |
1
|
derangsn |
⊢ ( 1 ∈ ℕ0 → ( 𝐷 ‘ { 1 } ) = 0 ) |
11 |
3 10
|
ax-mp |
⊢ ( 𝐷 ‘ { 1 } ) = 0 |
12 |
5 9 11
|
3eqtri |
⊢ ( 𝑆 ‘ 1 ) = 0 |