Description: The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | ||
Assertion | subfacf | ⊢ 𝑆 : ℕ0 ⟶ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
2 | subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | |
3 | fzfi | ⊢ ( 1 ... 𝑛 ) ∈ Fin | |
4 | 1 | derangf | ⊢ 𝐷 : Fin ⟶ ℕ0 |
5 | 4 | ffvelrni | ⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 ) |
6 | 3 5 | ax-mp | ⊢ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 |
7 | 6 | rgenw | ⊢ ∀ 𝑛 ∈ ℕ0 ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 |
8 | 2 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℕ0 ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 ↔ 𝑆 : ℕ0 ⟶ ℕ0 ) |
9 | 7 8 | mpbi | ⊢ 𝑆 : ℕ0 ⟶ ℕ0 |