Metamath Proof Explorer


Theorem subfacf

Description: The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
Assertion subfacf 𝑆 : ℕ0 ⟶ ℕ0

Proof

Step Hyp Ref Expression
1 derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
2 subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
3 fzfi ( 1 ... 𝑛 ) ∈ Fin
4 1 derangf 𝐷 : Fin ⟶ ℕ0
5 4 ffvelrni ( ( 1 ... 𝑛 ) ∈ Fin → ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0 )
6 3 5 ax-mp ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0
7 6 rgenw 𝑛 ∈ ℕ0 ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0
8 2 fmpt ( ∀ 𝑛 ∈ ℕ0 ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ∈ ℕ0𝑆 : ℕ0 ⟶ ℕ0 )
9 7 8 mpbi 𝑆 : ℕ0 ⟶ ℕ0