| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
| 3 |
|
subfacp1lem.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
| 4 |
|
subfacp1lem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
subfacp1lem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 6 |
|
subfacp1lem1.x |
⊢ 𝑀 ∈ V |
| 7 |
|
subfacp1lem1.k |
⊢ 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) |
| 8 |
|
subfacp1lem3.b |
⊢ 𝐵 = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) = 1 ) } |
| 9 |
|
subfacp1lem3.c |
⊢ 𝐶 = { 𝑓 ∣ ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
| 10 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin |
| 11 |
|
deranglem |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin ) |
| 12 |
10 11
|
ax-mp |
⊢ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin |
| 13 |
3 12
|
eqeltri |
⊢ 𝐴 ∈ Fin |
| 14 |
8
|
ssrab3 |
⊢ 𝐵 ⊆ 𝐴 |
| 15 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| 16 |
13 14 15
|
mp2an |
⊢ 𝐵 ∈ Fin |
| 17 |
16
|
elexi |
⊢ 𝐵 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 19 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ↾ 𝐾 ) ) = ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ↾ 𝐾 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 21 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 1 ) = ( 𝑏 ‘ 1 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( 𝑏 ‘ 1 ) = 𝑀 ) ) |
| 23 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑀 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 24 |
23
|
eqeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 𝑀 ) = 1 ↔ ( 𝑏 ‘ 𝑀 ) = 1 ) ) |
| 25 |
22 24
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) = 1 ) ↔ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) = 1 ) ) ) |
| 26 |
25 8
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) = 1 ) ) ) |
| 27 |
20 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) = 1 ) ) ) |
| 28 |
27
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) |
| 29 |
|
vex |
⊢ 𝑏 ∈ V |
| 30 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 31 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 32 |
31
|
neeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 33 |
32
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 34 |
30 33
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 35 |
29 34 3
|
elab2 |
⊢ ( 𝑏 ∈ 𝐴 ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 36 |
28 35
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 37 |
36
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 38 |
|
f1of1 |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 39 |
|
df-f1 |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ Fun ◡ 𝑏 ) ) |
| 40 |
39
|
simprbi |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) → Fun ◡ 𝑏 ) |
| 41 |
37 38 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Fun ◡ 𝑏 ) |
| 42 |
|
f1ofn |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝑏 Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 43 |
37 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 44 |
|
fnresdm |
⊢ ( 𝑏 Fn ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = 𝑏 ) |
| 45 |
|
f1oeq1 |
⊢ ( ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = 𝑏 → ( ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 46 |
43 44 45
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 47 |
37 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 48 |
|
f1ofo |
⊢ ( ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 50 |
|
ssun2 |
⊢ { 1 , 𝑀 } ⊆ ( 𝐾 ∪ { 1 , 𝑀 } ) |
| 51 |
1 2 3 4 5 6 7
|
subfacp1lem1 |
⊢ ( 𝜑 → ( ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ∧ ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ♯ ‘ 𝐾 ) = ( 𝑁 − 1 ) ) ) |
| 52 |
51
|
simp2d |
⊢ ( 𝜑 → ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 53 |
50 52
|
sseqtrid |
⊢ ( 𝜑 → { 1 , 𝑀 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → { 1 , 𝑀 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 55 |
43 54
|
fnssresd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ { 1 , 𝑀 } ) Fn { 1 , 𝑀 } ) |
| 56 |
27
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) = 1 ) ) |
| 57 |
56
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) = 𝑀 ) |
| 58 |
6
|
prid2 |
⊢ 𝑀 ∈ { 1 , 𝑀 } |
| 59 |
57 58
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) ∈ { 1 , 𝑀 } ) |
| 60 |
56
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) = 1 ) |
| 61 |
|
1ex |
⊢ 1 ∈ V |
| 62 |
61
|
prid1 |
⊢ 1 ∈ { 1 , 𝑀 } |
| 63 |
60 62
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) ∈ { 1 , 𝑀 } ) |
| 64 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 1 ) ) |
| 65 |
64
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ↔ ( 𝑏 ‘ 1 ) ∈ { 1 , 𝑀 } ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 67 |
66
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ↔ ( 𝑏 ‘ 𝑀 ) ∈ { 1 , 𝑀 } ) ) |
| 68 |
61 6 65 67
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ↔ ( ( 𝑏 ‘ 1 ) ∈ { 1 , 𝑀 } ∧ ( 𝑏 ‘ 𝑀 ) ∈ { 1 , 𝑀 } ) ) |
| 69 |
59 63 68
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ) |
| 70 |
|
fvres |
⊢ ( 𝑥 ∈ { 1 , 𝑀 } → ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 71 |
70
|
eleq1d |
⊢ ( 𝑥 ∈ { 1 , 𝑀 } → ( ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑥 ) ∈ { 1 , 𝑀 } ↔ ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ) ) |
| 72 |
71
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ { 1 , 𝑀 } ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑥 ) ∈ { 1 , 𝑀 } ↔ ∀ 𝑥 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑥 ) ∈ { 1 , 𝑀 } ) |
| 73 |
69 72
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ { 1 , 𝑀 } ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑥 ) ∈ { 1 , 𝑀 } ) |
| 74 |
|
ffnfv |
⊢ ( ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } ⟶ { 1 , 𝑀 } ↔ ( ( 𝑏 ↾ { 1 , 𝑀 } ) Fn { 1 , 𝑀 } ∧ ∀ 𝑥 ∈ { 1 , 𝑀 } ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑥 ) ∈ { 1 , 𝑀 } ) ) |
| 75 |
55 73 74
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } ⟶ { 1 , 𝑀 } ) |
| 76 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑏 ‘ 𝑦 ) = 1 ↔ ( 𝑏 ‘ 𝑀 ) = 1 ) ) |
| 77 |
76
|
rspcev |
⊢ ( ( 𝑀 ∈ { 1 , 𝑀 } ∧ ( 𝑏 ‘ 𝑀 ) = 1 ) → ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 1 ) |
| 78 |
58 60 77
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 1 ) |
| 79 |
|
fveqeq2 |
⊢ ( 𝑦 = 1 → ( ( 𝑏 ‘ 𝑦 ) = 𝑀 ↔ ( 𝑏 ‘ 1 ) = 𝑀 ) ) |
| 80 |
79
|
rspcev |
⊢ ( ( 1 ∈ { 1 , 𝑀 } ∧ ( 𝑏 ‘ 1 ) = 𝑀 ) → ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑀 ) |
| 81 |
62 57 80
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑀 ) |
| 82 |
|
eqeq2 |
⊢ ( 𝑥 = 1 → ( ( 𝑏 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑏 ‘ 𝑦 ) = 1 ) ) |
| 83 |
82
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ↔ ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 1 ) ) |
| 84 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑏 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑏 ‘ 𝑦 ) = 𝑀 ) ) |
| 85 |
84
|
rexbidv |
⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ↔ ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑀 ) ) |
| 86 |
61 6 83 85
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ↔ ( ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 1 ∧ ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑀 ) ) |
| 87 |
78 81 86
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ) |
| 88 |
|
eqcom |
⊢ ( 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ↔ ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) = 𝑥 ) |
| 89 |
|
fvres |
⊢ ( 𝑦 ∈ { 1 , 𝑀 } → ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 90 |
89
|
eqeq1d |
⊢ ( 𝑦 ∈ { 1 , 𝑀 } → ( ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) = 𝑥 ↔ ( 𝑏 ‘ 𝑦 ) = 𝑥 ) ) |
| 91 |
88 90
|
bitrid |
⊢ ( 𝑦 ∈ { 1 , 𝑀 } → ( 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = 𝑥 ) ) |
| 92 |
91
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ { 1 , 𝑀 } 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ) |
| 93 |
92
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = 𝑥 ) |
| 94 |
87 93
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ) |
| 95 |
|
dffo3 |
⊢ ( ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } –onto→ { 1 , 𝑀 } ↔ ( ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } ⟶ { 1 , 𝑀 } ∧ ∀ 𝑥 ∈ { 1 , 𝑀 } ∃ 𝑦 ∈ { 1 , 𝑀 } 𝑥 = ( ( 𝑏 ↾ { 1 , 𝑀 } ) ‘ 𝑦 ) ) ) |
| 96 |
75 94 95
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } –onto→ { 1 , 𝑀 } ) |
| 97 |
|
resdif |
⊢ ( ( Fun ◡ 𝑏 ∧ ( 𝑏 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑏 ↾ { 1 , 𝑀 } ) : { 1 , 𝑀 } –onto→ { 1 , 𝑀 } ) → ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) |
| 98 |
41 49 96 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) |
| 99 |
|
uncom |
⊢ ( { 1 , 𝑀 } ∪ 𝐾 ) = ( 𝐾 ∪ { 1 , 𝑀 } ) |
| 100 |
99 52
|
eqtrid |
⊢ ( 𝜑 → ( { 1 , 𝑀 } ∪ 𝐾 ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 101 |
|
incom |
⊢ ( { 1 , 𝑀 } ∩ 𝐾 ) = ( 𝐾 ∩ { 1 , 𝑀 } ) |
| 102 |
51
|
simp1d |
⊢ ( 𝜑 → ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ) |
| 103 |
101 102
|
eqtrid |
⊢ ( 𝜑 → ( { 1 , 𝑀 } ∩ 𝐾 ) = ∅ ) |
| 104 |
|
uneqdifeq |
⊢ ( ( { 1 , 𝑀 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 1 , 𝑀 } ∩ 𝐾 ) = ∅ ) → ( ( { 1 , 𝑀 } ∪ 𝐾 ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 ) ) |
| 105 |
53 103 104
|
syl2anc |
⊢ ( 𝜑 → ( ( { 1 , 𝑀 } ∪ 𝐾 ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 ) ) |
| 106 |
100 105
|
mpbid |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 ) |
| 108 |
|
reseq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 → ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) = ( 𝑏 ↾ 𝐾 ) ) |
| 109 |
108
|
f1oeq1d |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 → ( ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ↔ ( 𝑏 ↾ 𝐾 ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) ) |
| 110 |
|
f1oeq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 → ( ( 𝑏 ↾ 𝐾 ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ↔ ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) ) |
| 111 |
|
f1oeq3 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 → ( ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ↔ ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) |
| 112 |
109 110 111
|
3bitrd |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) = 𝐾 → ( ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ↔ ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) |
| 113 |
107 112
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 , 𝑀 } ) ↔ ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) |
| 114 |
98 113
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) |
| 115 |
|
ssun1 |
⊢ 𝐾 ⊆ ( 𝐾 ∪ { 1 , 𝑀 } ) |
| 116 |
115 52
|
sseqtrid |
⊢ ( 𝜑 → 𝐾 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 118 |
36
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 119 |
|
ssralv |
⊢ ( 𝐾 ⊆ ( 1 ... ( 𝑁 + 1 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 → ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 120 |
117 118 119
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 121 |
29
|
resex |
⊢ ( 𝑏 ↾ 𝐾 ) ∈ V |
| 122 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑏 ↾ 𝐾 ) → ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ↔ ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) |
| 123 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ↾ 𝐾 ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ) |
| 124 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐾 → ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 125 |
123 124
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑏 ↾ 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 126 |
125
|
neeq1d |
⊢ ( ( 𝑓 = ( 𝑏 ↾ 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 127 |
126
|
ralbidva |
⊢ ( 𝑓 = ( 𝑏 ↾ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 128 |
122 127
|
anbi12d |
⊢ ( 𝑓 = ( 𝑏 ↾ 𝐾 ) → ( ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 129 |
121 128 9
|
elab2 |
⊢ ( ( 𝑏 ↾ 𝐾 ) ∈ 𝐶 ↔ ( ( 𝑏 ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 130 |
114 120 129
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ 𝐾 ) ∈ 𝐶 ) |
| 131 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑁 ∈ ℕ ) |
| 132 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 133 |
|
eqid |
⊢ ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) |
| 134 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ 𝐶 ) |
| 135 |
|
vex |
⊢ 𝑐 ∈ V |
| 136 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ↔ 𝑐 : 𝐾 –1-1-onto→ 𝐾 ) ) |
| 137 |
|
fveq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 138 |
137
|
neeq1d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 139 |
138
|
ralbidv |
⊢ ( 𝑓 = 𝑐 → ( ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 140 |
136 139
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑐 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 141 |
135 140 9
|
elab2 |
⊢ ( 𝑐 ∈ 𝐶 ↔ ( 𝑐 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 142 |
134 141
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 143 |
142
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 : 𝐾 –1-1-onto→ 𝐾 ) |
| 144 |
1 2 3 131 132 6 7 133 143
|
subfacp1lem2a |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) ) |
| 145 |
144
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 146 |
1 2 3 131 132 6 7 133 143
|
subfacp1lem2b |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 147 |
142
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
| 148 |
147
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐾 ) → ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
| 149 |
146 148
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 150 |
149
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐾 ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 151 |
144
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ) |
| 152 |
|
elfzuz |
⊢ ( 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 153 |
|
eluz2b3 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) ) |
| 154 |
153
|
simprbi |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ≠ 1 ) |
| 155 |
5 152 154
|
3syl |
⊢ ( 𝜑 → 𝑀 ≠ 1 ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ≠ 1 ) |
| 157 |
151 156
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ≠ 1 ) |
| 158 |
144
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) |
| 159 |
156
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 1 ≠ 𝑀 ) |
| 160 |
158 159
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ≠ 𝑀 ) |
| 161 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ) |
| 162 |
|
id |
⊢ ( 𝑦 = 1 → 𝑦 = 1 ) |
| 163 |
161 162
|
neeq12d |
⊢ ( 𝑦 = 1 → ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ≠ 1 ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ) |
| 165 |
|
id |
⊢ ( 𝑦 = 𝑀 → 𝑦 = 𝑀 ) |
| 166 |
164 165
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ≠ 𝑀 ) ) |
| 167 |
61 6 163 166
|
ralpr |
⊢ ( ∀ 𝑦 ∈ { 1 , 𝑀 } ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ≠ 1 ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ≠ 𝑀 ) ) |
| 168 |
157 160 167
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ { 1 , 𝑀 } ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 169 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐾 ∪ { 1 , 𝑀 } ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ↔ ( ∀ 𝑦 ∈ 𝐾 ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ∧ ∀ 𝑦 ∈ { 1 , 𝑀 } ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 170 |
150 168 169
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝐾 ∪ { 1 , 𝑀 } ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 171 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 172 |
170 171
|
raleqtrdv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 173 |
|
prex |
⊢ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ∈ V |
| 174 |
135 173
|
unex |
⊢ ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ V |
| 175 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 176 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) |
| 177 |
176
|
neeq1d |
⊢ ( 𝑓 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 178 |
177
|
ralbidv |
⊢ ( 𝑓 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 179 |
175 178
|
anbi12d |
⊢ ( 𝑓 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 180 |
174 179 3
|
elab2 |
⊢ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ 𝐴 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 181 |
145 172 180
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ 𝐴 ) |
| 182 |
151 158
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) ) |
| 183 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( 𝑔 ‘ 1 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ) |
| 184 |
183
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ) ) |
| 185 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( 𝑔 ‘ 𝑀 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ) |
| 186 |
185
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ( 𝑔 ‘ 𝑀 ) = 1 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) ) |
| 187 |
184 186
|
anbi12d |
⊢ ( 𝑔 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) = 1 ) ↔ ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) ) ) |
| 188 |
187 8
|
elrab2 |
⊢ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ 𝐵 ↔ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ 𝐴 ∧ ( ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ∧ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) ) ) |
| 189 |
181 182 188
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ 𝐵 ) |
| 190 |
57
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 ‘ 1 ) = 𝑀 ) |
| 191 |
151
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) = 𝑀 ) |
| 192 |
190 191
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 ‘ 1 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ) |
| 193 |
60
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 ‘ 𝑀 ) = 1 ) |
| 194 |
158
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) = 1 ) |
| 195 |
193 194
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 ‘ 𝑀 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ) |
| 196 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 1 ) ) |
| 197 |
196 161
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( 𝑏 ‘ 1 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ) ) |
| 198 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 199 |
198 164
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑀 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ) ) |
| 200 |
61 6 197 199
|
ralpr |
⊢ ( ∀ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( ( 𝑏 ‘ 1 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 1 ) ∧ ( 𝑏 ‘ 𝑀 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑀 ) ) ) |
| 201 |
192 195 200
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ∀ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) |
| 202 |
201
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) ) |
| 203 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐾 ∪ { 1 , 𝑀 } ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 1 , 𝑀 } ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) |
| 204 |
202 203
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐾 ∪ { 1 , 𝑀 } ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) |
| 205 |
146
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 206 |
205
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 207 |
206
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 208 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 209 |
208
|
raleqdv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 𝐾 ∪ { 1 , 𝑀 } ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) |
| 210 |
204 207 209
|
3bitr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 211 |
124
|
eqeq2d |
⊢ ( 𝑦 ∈ 𝐾 → ( ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ↔ ( 𝑐 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 212 |
|
eqcom |
⊢ ( ( 𝑐 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 213 |
211 212
|
bitrdi |
⊢ ( 𝑦 ∈ 𝐾 → ( ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 214 |
213
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑏 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 215 |
210 214
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ) ) |
| 216 |
43
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑏 Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 217 |
145
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 218 |
|
f1ofn |
⊢ ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 219 |
217 218
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 220 |
|
eqfnfv |
⊢ ( ( 𝑏 Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) |
| 221 |
216 219 220
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) = ( ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ‘ 𝑦 ) ) ) |
| 222 |
143
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 : 𝐾 –1-1-onto→ 𝐾 ) |
| 223 |
|
f1ofn |
⊢ ( 𝑐 : 𝐾 –1-1-onto→ 𝐾 → 𝑐 Fn 𝐾 ) |
| 224 |
222 223
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 Fn 𝐾 ) |
| 225 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐾 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 226 |
216 225
|
fnssresd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 ↾ 𝐾 ) Fn 𝐾 ) |
| 227 |
|
eqfnfv |
⊢ ( ( 𝑐 Fn 𝐾 ∧ ( 𝑏 ↾ 𝐾 ) Fn 𝐾 ) → ( 𝑐 = ( 𝑏 ↾ 𝐾 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ) ) |
| 228 |
224 226 227
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑐 = ( 𝑏 ↾ 𝐾 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑐 ‘ 𝑦 ) = ( ( 𝑏 ↾ 𝐾 ) ‘ 𝑦 ) ) ) |
| 229 |
215 221 228
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 = ( 𝑐 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ↔ 𝑐 = ( 𝑏 ↾ 𝐾 ) ) ) |
| 230 |
19 130 189 229
|
f1o2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ↾ 𝐾 ) ) : 𝐵 –1-1-onto→ 𝐶 ) |
| 231 |
18 230
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
| 232 |
9
|
fveq2i |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
| 233 |
|
fzfi |
⊢ ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin |
| 234 |
|
diffi |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ Fin ) |
| 235 |
233 234
|
ax-mp |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ Fin |
| 236 |
7 235
|
eqeltri |
⊢ 𝐾 ∈ Fin |
| 237 |
1
|
derangval |
⊢ ( 𝐾 ∈ Fin → ( 𝐷 ‘ 𝐾 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 238 |
236 237
|
ax-mp |
⊢ ( 𝐷 ‘ 𝐾 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐾 –1-1-onto→ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
| 239 |
1 2
|
derangen2 |
⊢ ( 𝐾 ∈ Fin → ( 𝐷 ‘ 𝐾 ) = ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) ) |
| 240 |
236 239
|
ax-mp |
⊢ ( 𝐷 ‘ 𝐾 ) = ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) |
| 241 |
232 238 240
|
3eqtr2ri |
⊢ ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) = ( ♯ ‘ 𝐶 ) |
| 242 |
51
|
simp3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑁 − 1 ) ) |
| 243 |
242
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) = ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) |
| 244 |
241 243
|
eqtr3id |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) = ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) |
| 245 |
231 244
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) |