Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
3 |
|
subfacp1lem.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
4 |
|
subfacp1lem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
subfacp1lem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
6 |
|
subfacp1lem1.x |
⊢ 𝑀 ∈ V |
7 |
|
subfacp1lem1.k |
⊢ 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) |
8 |
|
subfacp1lem5.b |
⊢ 𝐵 = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) } |
9 |
|
subfacp1lem5.f |
⊢ 𝐹 = ( ( I ↾ 𝐾 ) ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) |
10 |
|
subfacp1lem5.c |
⊢ 𝐶 = { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
11 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin |
12 |
|
deranglem |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin ) |
13 |
11 12
|
ax-mp |
⊢ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin |
14 |
3 13
|
eqeltri |
⊢ 𝐴 ∈ Fin |
15 |
8
|
ssrab3 |
⊢ 𝐵 ⊆ 𝐴 |
16 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
17 |
14 15 16
|
mp2an |
⊢ 𝐵 ∈ Fin |
18 |
17
|
elexi |
⊢ 𝐵 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
20 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
21 |
|
f1oi |
⊢ ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) |
23 |
1 2 3 4 5 6 7 9 22
|
subfacp1lem2a |
⊢ ( 𝜑 → ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ‘ 1 ) = 𝑀 ∧ ( 𝐹 ‘ 𝑀 ) = 1 ) ) |
24 |
23
|
simp1d |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
26 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 1 ) = ( 𝑏 ‘ 1 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( 𝑏 ‘ 1 ) = 𝑀 ) ) |
28 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑀 ) = ( 𝑏 ‘ 𝑀 ) ) |
29 |
28
|
neeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 𝑀 ) ≠ 1 ↔ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) |
30 |
27 29
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) ↔ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
31 |
30 8
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
32 |
25 31
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
33 |
32
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) |
34 |
|
vex |
⊢ 𝑏 ∈ V |
35 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
36 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
37 |
36
|
neeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
39 |
35 38
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
40 |
34 39 3
|
elab2 |
⊢ ( 𝑏 ∈ 𝐴 ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
41 |
33 40
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
42 |
41
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
43 |
|
f1oco |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
44 |
24 42 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
45 |
|
f1of1 |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
46 |
|
df-f1 |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ Fun ◡ ( 𝐹 ∘ 𝑏 ) ) ) |
47 |
46
|
simprbi |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) → Fun ◡ ( 𝐹 ∘ 𝑏 ) ) |
48 |
44 45 47
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Fun ◡ ( 𝐹 ∘ 𝑏 ) ) |
49 |
|
f1ofn |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
50 |
|
fnresdm |
⊢ ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝐹 ∘ 𝑏 ) ) |
51 |
|
f1oeq1 |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝐹 ∘ 𝑏 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
52 |
44 49 50 51
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
53 |
44 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
54 |
|
f1ofo |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
56 |
|
1ex |
⊢ 1 ∈ V |
57 |
56 56
|
f1osn |
⊢ { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } |
58 |
44 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
59 |
4
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
60 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
61 |
59 60
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
62 |
|
eluzfz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
65 |
|
fnressn |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } ) |
66 |
58 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } ) |
67 |
|
f1of |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
68 |
42 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
69 |
68 64
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑏 ‘ 1 ) ) ) |
70 |
32
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) |
71 |
70
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) = 𝑀 ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑏 ‘ 1 ) ) = ( 𝐹 ‘ 𝑀 ) ) |
73 |
23
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = 1 ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑀 ) = 1 ) |
75 |
69 72 74
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = 1 ) |
76 |
75
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 = 〈 1 , 1 〉 ) |
77 |
76
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } = { 〈 1 , 1 〉 } ) |
78 |
66 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , 1 〉 } ) |
79 |
78
|
f1oeq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } ↔ { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ) ) |
80 |
57 79
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } ) |
81 |
|
f1ofo |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) |
82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) |
83 |
|
resdif |
⊢ ( ( Fun ◡ ( 𝐹 ∘ 𝑏 ) ∧ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) |
84 |
48 55 82 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) |
85 |
|
fzsplit |
⊢ ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
86 |
63 85
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
87 |
|
1z |
⊢ 1 ∈ ℤ |
88 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
89 |
87 88
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
90 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
91 |
90
|
oveq1i |
⊢ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) = ( 2 ... ( 𝑁 + 1 ) ) |
92 |
89 91
|
uneq12i |
⊢ ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) = ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) |
93 |
86 92
|
eqtr2di |
⊢ ( 𝜑 → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
94 |
63
|
snssd |
⊢ ( 𝜑 → { 1 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
95 |
|
incom |
⊢ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) |
96 |
|
1lt2 |
⊢ 1 < 2 |
97 |
|
1re |
⊢ 1 ∈ ℝ |
98 |
|
2re |
⊢ 2 ∈ ℝ |
99 |
97 98
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
100 |
96 99
|
mpbi |
⊢ ¬ 2 ≤ 1 |
101 |
|
elfzle1 |
⊢ ( 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 2 ≤ 1 ) |
102 |
100 101
|
mto |
⊢ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) |
103 |
|
disjsn |
⊢ ( ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
104 |
102 103
|
mpbir |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) = ∅ |
105 |
95 104
|
eqtri |
⊢ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ |
106 |
|
uneqdifeq |
⊢ ( ( { 1 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ) → ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) ) |
107 |
94 105 106
|
sylancl |
⊢ ( 𝜑 → ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) ) |
108 |
93 107
|
mpbid |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) |
110 |
|
reseq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
111 |
110
|
f1oeq1d |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) ) |
112 |
|
f1oeq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) ) |
113 |
|
f1oeq3 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
114 |
111 112 113
|
3bitrd |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
115 |
109 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
116 |
84 115
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
117 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
118 |
|
fzp1ss |
⊢ ( 1 ∈ ℤ → ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
119 |
87 118
|
ax-mp |
⊢ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
120 |
91 119
|
eqsstrri |
⊢ ( 2 ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
121 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
122 |
120 121
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
123 |
117 122
|
fvco3d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ) |
124 |
1 2 3 4 5 6 7 8 9
|
subfacp1lem4 |
⊢ ( 𝜑 → ◡ 𝐹 = 𝐹 ) |
125 |
124
|
fveq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
126 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
127 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) ≠ 1 ) |
128 |
127 74
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
130 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑀 ) ) |
131 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑀 ) ) |
132 |
130 131
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) ) |
133 |
129 132
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 = 𝑀 → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
134 |
120
|
sseli |
⊢ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
135 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
136 |
135
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
137 |
134 136
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
138 |
137
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
139 |
7
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ) |
140 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ↔ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) |
141 |
139 140
|
bitri |
⊢ ( 𝑦 ∈ 𝐾 ↔ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) |
142 |
1 2 3 4 5 6 7 9 22
|
subfacp1lem2b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = ( ( I ↾ 𝐾 ) ‘ 𝑦 ) ) |
143 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐾 → ( ( I ↾ 𝐾 ) ‘ 𝑦 ) = 𝑦 ) |
144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( ( I ↾ 𝐾 ) ‘ 𝑦 ) = 𝑦 ) |
145 |
142 144
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
146 |
141 145
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
147 |
146
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
148 |
138 147
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
149 |
148
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ≠ 𝑀 → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
150 |
133 149
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
151 |
150
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) ) |
152 |
126 151
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) ) |
153 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
154 |
|
ffvelrn |
⊢ ( ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
155 |
68 134 154
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
156 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
157 |
153 155 156
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
158 |
157
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) → ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ≠ 𝑦 ) ) |
159 |
152 158
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ≠ 𝑦 ) |
160 |
123 159
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) |
161 |
160
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) |
162 |
|
f1of |
⊢ ( ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 → ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 ) |
163 |
21 162
|
ax-mp |
⊢ ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 |
164 |
|
fzfi |
⊢ ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin |
165 |
|
difexg |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ V ) |
166 |
164 165
|
ax-mp |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ V |
167 |
7 166
|
eqeltri |
⊢ 𝐾 ∈ V |
168 |
|
fex |
⊢ ( ( ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 ∧ 𝐾 ∈ V ) → ( I ↾ 𝐾 ) ∈ V ) |
169 |
163 167 168
|
mp2an |
⊢ ( I ↾ 𝐾 ) ∈ V |
170 |
|
prex |
⊢ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ∈ V |
171 |
169 170
|
unex |
⊢ ( ( I ↾ 𝐾 ) ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ V |
172 |
9 171
|
eqeltri |
⊢ 𝐹 ∈ V |
173 |
172 34
|
coex |
⊢ ( 𝐹 ∘ 𝑏 ) ∈ V |
174 |
173
|
resex |
⊢ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ V |
175 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
176 |
|
fveq1 |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) ) |
177 |
|
fvres |
⊢ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
178 |
176 177
|
sylan9eq |
⊢ ( ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
179 |
178
|
neeq1d |
⊢ ( ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
180 |
179
|
ralbidva |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
181 |
175 180
|
anbi12d |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
182 |
174 181 10
|
elab2 |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ 𝐶 ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
183 |
116 161 182
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ 𝐶 ) |
184 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ 𝐶 ) |
185 |
|
vex |
⊢ 𝑐 ∈ V |
186 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ↔ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
187 |
|
fveq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
188 |
187
|
neeq1d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
189 |
188
|
ralbidv |
⊢ ( 𝑓 = 𝑐 → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
190 |
186 189
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
191 |
185 190 10
|
elab2 |
⊢ ( 𝑐 ∈ 𝐶 ↔ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
192 |
184 191
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
193 |
192
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
194 |
|
f1oun |
⊢ ( ( ( { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ∧ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ ( ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ∧ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
195 |
105 105 194
|
mpanr12 |
⊢ ( ( { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ∧ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
196 |
57 193 195
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
197 |
|
f1oeq2 |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
198 |
|
f1oeq3 |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
199 |
197 198
|
bitrd |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
200 |
93 199
|
syl |
⊢ ( 𝜑 → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
201 |
200
|
biimpa |
⊢ ( ( 𝜑 ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
202 |
196 201
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
203 |
|
f1oco |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
204 |
24 202 203
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
205 |
|
f1of |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
206 |
202 205
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
207 |
|
fvco3 |
⊢ ( ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
208 |
206 207
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
209 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
210 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
211 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
212 |
210 211
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
213 |
|
elun |
⊢ ( 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
214 |
212 213
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
215 |
|
nelne2 |
⊢ ( ( 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑀 ≠ 1 ) |
216 |
5 102 215
|
sylancl |
⊢ ( 𝜑 → 𝑀 ≠ 1 ) |
217 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ≠ 1 ) |
218 |
23
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑀 ) |
219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ 1 ) = 𝑀 ) |
220 |
|
f1ofun |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
221 |
196 220
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
222 |
|
ssun1 |
⊢ { 〈 1 , 1 〉 } ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) |
223 |
56
|
snid |
⊢ 1 ∈ { 1 } |
224 |
56
|
dmsnop |
⊢ dom { 〈 1 , 1 〉 } = { 1 } |
225 |
223 224
|
eleqtrri |
⊢ 1 ∈ dom { 〈 1 , 1 〉 } |
226 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ { 〈 1 , 1 〉 } ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 1 ∈ dom { 〈 1 , 1 〉 } ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
227 |
222 225 226
|
mp3an23 |
⊢ ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
228 |
221 227
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
229 |
56 56
|
fvsn |
⊢ ( { 〈 1 , 1 〉 } ‘ 1 ) = 1 |
230 |
228 229
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = 1 ) |
231 |
217 219 230
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ 1 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
232 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
233 |
232
|
fveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
234 |
232
|
fveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
235 |
233 234
|
neeq12d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 1 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
236 |
231 235
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑦 ∈ { 1 } → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
237 |
236
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ { 1 } ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
238 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
239 |
|
ssun2 |
⊢ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) |
240 |
239
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
241 |
|
f1odm |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → dom 𝑐 = ( 2 ... ( 𝑁 + 1 ) ) ) |
242 |
193 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → dom 𝑐 = ( 2 ... ( 𝑁 + 1 ) ) ) |
243 |
242
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
244 |
243
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ dom 𝑐 ) |
245 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑦 ∈ dom 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
246 |
238 240 244 245
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
247 |
|
f1of |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) ⟶ ( 2 ... ( 𝑁 + 1 ) ) ) |
248 |
193 247
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) ⟶ ( 2 ... ( 𝑁 + 1 ) ) ) |
249 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
250 |
248 249
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
251 |
|
nelne2 |
⊢ ( ( ( 𝑐 ‘ 𝑀 ) ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
252 |
250 102 251
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
253 |
252
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
254 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) = 1 ) |
255 |
253 254
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
256 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑐 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑀 ) ) |
257 |
256 131
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑐 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) ) |
258 |
255 257
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 = 𝑀 → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
259 |
192
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
260 |
259
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
261 |
260
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
262 |
146
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
263 |
261 262
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
264 |
263
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ≠ 𝑀 → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
265 |
258 264
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
266 |
246 265
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
267 |
266
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
268 |
237 267
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
269 |
214 268
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
270 |
209 269
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
271 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
272 |
206
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
273 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
274 |
271 272 273
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
275 |
274
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ≠ 𝑦 ) ) |
276 |
270 275
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ≠ 𝑦 ) |
277 |
208 276
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) |
278 |
277
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) |
279 |
|
snex |
⊢ { 〈 1 , 1 〉 } ∈ V |
280 |
279 185
|
unex |
⊢ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∈ V |
281 |
172 280
|
coex |
⊢ ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ V |
282 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
283 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ) |
284 |
283
|
neeq1d |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
285 |
284
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
286 |
282 285
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
287 |
281 286 3
|
elab2 |
⊢ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
288 |
204 278 287
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ) |
289 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
290 |
206 289
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
291 |
230
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
292 |
290 291 219
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ) |
293 |
120 5
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
294 |
293
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
295 |
206 294
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) ) ) |
296 |
239
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
297 |
249 242
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ dom 𝑐 ) |
298 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑀 ∈ dom 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) = ( 𝑐 ‘ 𝑀 ) ) |
299 |
221 296 297 298
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) = ( 𝑐 ‘ 𝑀 ) ) |
300 |
299
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) ) = ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) |
301 |
295 300
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) |
302 |
124
|
fveq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
303 |
302 218
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) = 𝑀 ) |
304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ◡ 𝐹 ‘ 1 ) = 𝑀 ) |
305 |
|
id |
⊢ ( 𝑦 = 𝑀 → 𝑦 = 𝑀 ) |
306 |
256 305
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑐 ‘ 𝑀 ) ≠ 𝑀 ) ) |
307 |
306 259 249
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ≠ 𝑀 ) |
308 |
307
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ≠ ( 𝑐 ‘ 𝑀 ) ) |
309 |
304 308
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ◡ 𝐹 ‘ 1 ) ≠ ( 𝑐 ‘ 𝑀 ) ) |
310 |
120 250
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
311 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑐 ‘ 𝑀 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) = 1 → ( ◡ 𝐹 ‘ 1 ) = ( 𝑐 ‘ 𝑀 ) ) ) |
312 |
24 310 311
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) = 1 → ( ◡ 𝐹 ‘ 1 ) = ( 𝑐 ‘ 𝑀 ) ) ) |
313 |
312
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( ◡ 𝐹 ‘ 1 ) ≠ ( 𝑐 ‘ 𝑀 ) → ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ≠ 1 ) ) |
314 |
309 313
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ≠ 1 ) |
315 |
301 314
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) |
316 |
292 315
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) |
317 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑔 ‘ 1 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) ) |
318 |
317
|
eqeq1d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ) ) |
319 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑔 ‘ 𝑀 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ) |
320 |
319
|
neeq1d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑔 ‘ 𝑀 ) ≠ 1 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) |
321 |
318 320
|
anbi12d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) ↔ ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) ) |
322 |
321 8
|
elrab2 |
⊢ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐵 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ∧ ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) ) |
323 |
288 316 322
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐵 ) |
324 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
325 |
|
f1of1 |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
326 |
324 325
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
327 |
|
f1of |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
328 |
324 327
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
329 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
330 |
328 329
|
fcod |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
331 |
206
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
332 |
|
cocan1 |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) |
333 |
326 330 331 332
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) |
334 |
|
coass |
⊢ ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) |
335 |
124
|
coeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( 𝐹 ∘ 𝐹 ) ) |
336 |
|
f1ococnv1 |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
337 |
24 336
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
338 |
335 337
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
339 |
338
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
340 |
339
|
coeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) ) |
341 |
|
fcoi2 |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) → ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) = 𝑏 ) |
342 |
329 341
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) = 𝑏 ) |
343 |
340 342
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = 𝑏 ) |
344 |
334 343
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = 𝑏 ) |
345 |
344
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ 𝑏 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) ) |
346 |
75
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = 1 ) |
347 |
230
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = 1 ) |
348 |
346 347
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
349 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) ) |
350 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
351 |
349 350
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
352 |
56 351
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
353 |
348 352
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
354 |
353
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) ) |
355 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
356 |
354 355
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
357 |
177
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
358 |
357
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) ) |
359 |
246
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
360 |
358 359
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
361 |
360
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
362 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
363 |
362
|
raleqdv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
364 |
356 361 363
|
3bitr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
365 |
58
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
366 |
202
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
367 |
|
f1ofn |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
368 |
366 367
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
369 |
|
eqfnfv |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
370 |
365 368 369
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
371 |
|
fnssres |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 2 ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
372 |
365 120 371
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
373 |
193
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
374 |
|
f1ofn |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
375 |
373 374
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
376 |
|
eqfnfv |
⊢ ( ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
377 |
372 375 376
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
378 |
364 370 377
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ) ) |
379 |
|
eqcom |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
380 |
378 379
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
381 |
333 345 380
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
382 |
20 183 323 381
|
f1o2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) : 𝐵 –1-1-onto→ 𝐶 ) |
383 |
19 382
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
384 |
1 2
|
derangen2 |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
385 |
1
|
derangval |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
386 |
10
|
fveq2i |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
387 |
385 386
|
eqtr4di |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝐶 ) ) |
388 |
384 387
|
eqtr3d |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( ♯ ‘ 𝐶 ) ) |
389 |
164 388
|
ax-mp |
⊢ ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( ♯ ‘ 𝐶 ) |
390 |
4 60
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
391 |
|
eluzp1p1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
392 |
390 391
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
393 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
394 |
393
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
395 |
392 394
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
396 |
|
hashfz |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
397 |
395 396
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
398 |
59
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
399 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
400 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
401 |
398 399 400
|
subsubd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
402 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
403 |
402
|
oveq2i |
⊢ ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = ( ( 𝑁 + 1 ) − 1 ) |
404 |
4
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
405 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
406 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
407 |
404 405 406
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
408 |
403 407
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = 𝑁 ) |
409 |
397 401 408
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑁 ) |
410 |
409
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
411 |
389 410
|
eqtr3id |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) = ( 𝑆 ‘ 𝑁 ) ) |
412 |
383 411
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑆 ‘ 𝑁 ) ) |