| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
| 3 |
|
subfacp1lem.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
| 4 |
|
subfacp1lem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
subfacp1lem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 6 |
|
subfacp1lem1.x |
⊢ 𝑀 ∈ V |
| 7 |
|
subfacp1lem1.k |
⊢ 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) |
| 8 |
|
subfacp1lem5.b |
⊢ 𝐵 = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) } |
| 9 |
|
subfacp1lem5.f |
⊢ 𝐹 = ( ( I ↾ 𝐾 ) ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) |
| 10 |
|
subfacp1lem5.c |
⊢ 𝐶 = { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
| 11 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin |
| 12 |
|
deranglem |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin ) |
| 13 |
11 12
|
ax-mp |
⊢ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin |
| 14 |
3 13
|
eqeltri |
⊢ 𝐴 ∈ Fin |
| 15 |
8
|
ssrab3 |
⊢ 𝐵 ⊆ 𝐴 |
| 16 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| 17 |
14 15 16
|
mp2an |
⊢ 𝐵 ∈ Fin |
| 18 |
17
|
elexi |
⊢ 𝐵 ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 20 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 21 |
|
f1oi |
⊢ ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) |
| 23 |
1 2 3 4 5 6 7 9 22
|
subfacp1lem2a |
⊢ ( 𝜑 → ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ‘ 1 ) = 𝑀 ∧ ( 𝐹 ‘ 𝑀 ) = 1 ) ) |
| 24 |
23
|
simp1d |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 26 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 1 ) = ( 𝑏 ‘ 1 ) ) |
| 27 |
26
|
eqeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( 𝑏 ‘ 1 ) = 𝑀 ) ) |
| 28 |
|
fveq1 |
⊢ ( 𝑔 = 𝑏 → ( 𝑔 ‘ 𝑀 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 29 |
28
|
neeq1d |
⊢ ( 𝑔 = 𝑏 → ( ( 𝑔 ‘ 𝑀 ) ≠ 1 ↔ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) |
| 30 |
27 29
|
anbi12d |
⊢ ( 𝑔 = 𝑏 → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) ↔ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
| 31 |
30 8
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
| 32 |
25 31
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) ) |
| 33 |
32
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) |
| 34 |
|
vex |
⊢ 𝑏 ∈ V |
| 35 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 36 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 37 |
36
|
neeq1d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 38 |
37
|
ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 39 |
35 38
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 40 |
34 39 3
|
elab2 |
⊢ ( 𝑏 ∈ 𝐴 ↔ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 41 |
33 40
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 42 |
41
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 43 |
|
f1oco |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 44 |
24 42 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 45 |
|
f1of1 |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 46 |
|
df-f1 |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ Fun ◡ ( 𝐹 ∘ 𝑏 ) ) ) |
| 47 |
46
|
simprbi |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) → Fun ◡ ( 𝐹 ∘ 𝑏 ) ) |
| 48 |
44 45 47
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Fun ◡ ( 𝐹 ∘ 𝑏 ) ) |
| 49 |
|
f1ofn |
⊢ ( ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 50 |
|
fnresdm |
⊢ ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝐹 ∘ 𝑏 ) ) |
| 51 |
|
f1oeq1 |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝐹 ∘ 𝑏 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 52 |
44 49 50 51
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 53 |
44 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 54 |
|
f1ofo |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 56 |
|
1ex |
⊢ 1 ∈ V |
| 57 |
56 56
|
f1osn |
⊢ { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } |
| 58 |
44 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 59 |
4
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 60 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 61 |
59 60
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 |
|
eluzfz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 65 |
|
fnressn |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } ) |
| 66 |
58 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } ) |
| 67 |
|
f1of |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 68 |
42 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 69 |
68 64
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑏 ‘ 1 ) ) ) |
| 70 |
32
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) = 𝑀 ∧ ( 𝑏 ‘ 𝑀 ) ≠ 1 ) ) |
| 71 |
70
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) = 𝑀 ) |
| 72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑏 ‘ 1 ) ) = ( 𝐹 ‘ 𝑀 ) ) |
| 73 |
23
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = 1 ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑀 ) = 1 ) |
| 75 |
69 72 74
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = 1 ) |
| 76 |
75
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 = 〈 1 , 1 〉 ) |
| 77 |
76
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → { 〈 1 , ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) 〉 } = { 〈 1 , 1 〉 } ) |
| 78 |
66 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) = { 〈 1 , 1 〉 } ) |
| 79 |
78
|
f1oeq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } ↔ { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ) ) |
| 80 |
57 79
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } ) |
| 81 |
|
f1ofo |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –1-1-onto→ { 1 } → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) |
| 82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) |
| 83 |
|
resdif |
⊢ ( ( Fun ◡ ( 𝐹 ∘ 𝑏 ) ∧ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 1 ... ( 𝑁 + 1 ) ) ) : ( 1 ... ( 𝑁 + 1 ) ) –onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ( 𝐹 ∘ 𝑏 ) ↾ { 1 } ) : { 1 } –onto→ { 1 } ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) |
| 84 |
48 55 82 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) |
| 85 |
|
fzsplit |
⊢ ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 86 |
63 85
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 87 |
|
1z |
⊢ 1 ∈ ℤ |
| 88 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 89 |
87 88
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
| 90 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 91 |
90
|
oveq1i |
⊢ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) = ( 2 ... ( 𝑁 + 1 ) ) |
| 92 |
89 91
|
uneq12i |
⊢ ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) = ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 93 |
86 92
|
eqtr2di |
⊢ ( 𝜑 → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 94 |
63
|
snssd |
⊢ ( 𝜑 → { 1 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 95 |
|
incom |
⊢ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) |
| 96 |
|
1lt2 |
⊢ 1 < 2 |
| 97 |
|
1re |
⊢ 1 ∈ ℝ |
| 98 |
|
2re |
⊢ 2 ∈ ℝ |
| 99 |
97 98
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 100 |
96 99
|
mpbi |
⊢ ¬ 2 ≤ 1 |
| 101 |
|
elfzle1 |
⊢ ( 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 2 ≤ 1 ) |
| 102 |
100 101
|
mto |
⊢ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) |
| 103 |
|
disjsn |
⊢ ( ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 104 |
102 103
|
mpbir |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∩ { 1 } ) = ∅ |
| 105 |
95 104
|
eqtri |
⊢ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ |
| 106 |
|
uneqdifeq |
⊢ ( ( { 1 } ⊆ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ) → ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 107 |
94 105 106
|
sylancl |
⊢ ( 𝜑 → ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 108 |
93 107
|
mpbid |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) ) |
| 110 |
|
reseq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 111 |
110
|
f1oeq1d |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) ) |
| 112 |
|
f1oeq2 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) ) |
| 113 |
|
f1oeq3 |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 114 |
111 112 113
|
3bitrd |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) = ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 115 |
109 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ) : ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 + 1 ) ) ∖ { 1 } ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 116 |
84 115
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 117 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 118 |
|
fzp1ss |
⊢ ( 1 ∈ ℤ → ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 119 |
87 118
|
ax-mp |
⊢ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
| 120 |
91 119
|
eqsstrri |
⊢ ( 2 ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
| 121 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 122 |
120 121
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 123 |
117 122
|
fvco3d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ) |
| 124 |
1 2 3 4 5 6 7 8 9
|
subfacp1lem4 |
⊢ ( 𝜑 → ◡ 𝐹 = 𝐹 ) |
| 125 |
124
|
fveq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 126 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 127 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) ≠ 1 ) |
| 128 |
127 74
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
| 130 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 131 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 132 |
130 131
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) ) |
| 133 |
129 132
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 = 𝑀 → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 134 |
120
|
sseli |
⊢ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 135 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 136 |
135
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 137 |
134 136
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 138 |
137
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑏 ‘ 𝑦 ) ≠ 𝑦 ) |
| 139 |
7
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ) |
| 140 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ↔ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) |
| 141 |
139 140
|
bitri |
⊢ ( 𝑦 ∈ 𝐾 ↔ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) |
| 142 |
1 2 3 4 5 6 7 9 22
|
subfacp1lem2b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = ( ( I ↾ 𝐾 ) ‘ 𝑦 ) ) |
| 143 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐾 → ( ( I ↾ 𝐾 ) ‘ 𝑦 ) = 𝑦 ) |
| 144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( ( I ↾ 𝐾 ) ‘ 𝑦 ) = 𝑦 ) |
| 145 |
142 144
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 146 |
141 145
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 147 |
146
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 148 |
138 147
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 149 |
148
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ≠ 𝑀 → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 150 |
133 149
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 151 |
150
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) ) |
| 152 |
126 151
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) ) |
| 153 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 154 |
|
ffvelcdm |
⊢ ( ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 155 |
68 134 154
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 156 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 157 |
153 155 156
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) ) |
| 158 |
157
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( 𝑏 ‘ 𝑦 ) → ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ≠ 𝑦 ) ) |
| 159 |
152 158
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ≠ 𝑦 ) |
| 160 |
123 159
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 161 |
160
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 162 |
|
f1of |
⊢ ( ( I ↾ 𝐾 ) : 𝐾 –1-1-onto→ 𝐾 → ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 ) |
| 163 |
21 162
|
ax-mp |
⊢ ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 |
| 164 |
|
fzfi |
⊢ ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin |
| 165 |
|
difexg |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ V ) |
| 166 |
164 165
|
ax-mp |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ V |
| 167 |
7 166
|
eqeltri |
⊢ 𝐾 ∈ V |
| 168 |
|
fex |
⊢ ( ( ( I ↾ 𝐾 ) : 𝐾 ⟶ 𝐾 ∧ 𝐾 ∈ V ) → ( I ↾ 𝐾 ) ∈ V ) |
| 169 |
163 167 168
|
mp2an |
⊢ ( I ↾ 𝐾 ) ∈ V |
| 170 |
|
prex |
⊢ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ∈ V |
| 171 |
169 170
|
unex |
⊢ ( ( I ↾ 𝐾 ) ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) ∈ V |
| 172 |
9 171
|
eqeltri |
⊢ 𝐹 ∈ V |
| 173 |
172 34
|
coex |
⊢ ( 𝐹 ∘ 𝑏 ) ∈ V |
| 174 |
173
|
resex |
⊢ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ V |
| 175 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 176 |
|
fveq1 |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) ) |
| 177 |
|
fvres |
⊢ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
| 178 |
176 177
|
sylan9eq |
⊢ ( ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
| 179 |
178
|
neeq1d |
⊢ ( ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 180 |
179
|
ralbidva |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 181 |
175 180
|
anbi12d |
⊢ ( 𝑓 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 182 |
174 181 10
|
elab2 |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ 𝐶 ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 183 |
116 161 182
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ∈ 𝐶 ) |
| 184 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ 𝐶 ) |
| 185 |
|
vex |
⊢ 𝑐 ∈ V |
| 186 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ↔ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 187 |
|
fveq1 |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 188 |
187
|
neeq1d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 189 |
188
|
ralbidv |
⊢ ( 𝑓 = 𝑐 → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 190 |
186 189
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 191 |
185 190 10
|
elab2 |
⊢ ( 𝑐 ∈ 𝐶 ↔ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 192 |
184 191
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 193 |
192
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 194 |
|
f1oun |
⊢ ( ( ( { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ∧ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ∧ ( ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ∧ ( { 1 } ∩ ( 2 ... ( 𝑁 + 1 ) ) ) = ∅ ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 195 |
105 105 194
|
mpanr12 |
⊢ ( ( { 〈 1 , 1 〉 } : { 1 } –1-1-onto→ { 1 } ∧ 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 196 |
57 193 195
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 197 |
|
f1oeq2 |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
| 198 |
|
f1oeq3 |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 199 |
197 198
|
bitrd |
⊢ ( ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 200 |
93 199
|
syl |
⊢ ( 𝜑 → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 201 |
200
|
biimpa |
⊢ ( ( 𝜑 ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 202 |
196 201
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 203 |
|
f1oco |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 204 |
24 202 203
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 205 |
|
f1of |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 206 |
202 205
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 207 |
|
fvco3 |
⊢ ( ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 208 |
206 207
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 209 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 210 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 211 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 212 |
210 211
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 213 |
|
elun |
⊢ ( 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ↔ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 214 |
212 213
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 215 |
|
nelne2 |
⊢ ( ( 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑀 ≠ 1 ) |
| 216 |
5 102 215
|
sylancl |
⊢ ( 𝜑 → 𝑀 ≠ 1 ) |
| 217 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ≠ 1 ) |
| 218 |
23
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑀 ) |
| 219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ 1 ) = 𝑀 ) |
| 220 |
|
f1ofun |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) –1-1-onto→ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
| 221 |
196 220
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
| 222 |
|
ssun1 |
⊢ { 〈 1 , 1 〉 } ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) |
| 223 |
56
|
snid |
⊢ 1 ∈ { 1 } |
| 224 |
56
|
dmsnop |
⊢ dom { 〈 1 , 1 〉 } = { 1 } |
| 225 |
223 224
|
eleqtrri |
⊢ 1 ∈ dom { 〈 1 , 1 〉 } |
| 226 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ { 〈 1 , 1 〉 } ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 1 ∈ dom { 〈 1 , 1 〉 } ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
| 227 |
222 225 226
|
mp3an23 |
⊢ ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
| 228 |
221 227
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = ( { 〈 1 , 1 〉 } ‘ 1 ) ) |
| 229 |
56 56
|
fvsn |
⊢ ( { 〈 1 , 1 〉 } ‘ 1 ) = 1 |
| 230 |
228 229
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = 1 ) |
| 231 |
217 219 230
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ 1 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
| 232 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
| 233 |
232
|
fveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 234 |
232
|
fveq2d |
⊢ ( 𝑦 ∈ { 1 } → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
| 235 |
233 234
|
neeq12d |
⊢ ( 𝑦 ∈ { 1 } → ( ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 1 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
| 236 |
231 235
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑦 ∈ { 1 } → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 237 |
236
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ { 1 } ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 238 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
| 239 |
|
ssun2 |
⊢ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) |
| 240 |
239
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
| 241 |
|
f1odm |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → dom 𝑐 = ( 2 ... ( 𝑁 + 1 ) ) ) |
| 242 |
193 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → dom 𝑐 = ( 2 ... ( 𝑁 + 1 ) ) ) |
| 243 |
242
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 244 |
243
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → 𝑦 ∈ dom 𝑐 ) |
| 245 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑦 ∈ dom 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 246 |
238 240 244 245
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 247 |
|
f1of |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) ⟶ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 248 |
193 247
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) ⟶ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 249 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 250 |
248 249
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 251 |
|
nelne2 |
⊢ ( ( ( 𝑐 ‘ 𝑀 ) ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ ¬ 1 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
| 252 |
250 102 251
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
| 253 |
252
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ 1 ) |
| 254 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) = 1 ) |
| 255 |
253 254
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) |
| 256 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑐 ‘ 𝑦 ) = ( 𝑐 ‘ 𝑀 ) ) |
| 257 |
256 131
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑐 ‘ 𝑀 ) ≠ ( 𝐹 ‘ 𝑀 ) ) ) |
| 258 |
255 257
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 = 𝑀 → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 259 |
192
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
| 260 |
259
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
| 261 |
260
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ) |
| 262 |
146
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 263 |
261 262
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ≠ 𝑀 ) ) → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 264 |
263
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑦 ≠ 𝑀 → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 265 |
258 264
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 266 |
246 265
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 267 |
266
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 268 |
237 267
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑦 ∈ { 1 } ∨ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 269 |
214 268
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 270 |
209 269
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 271 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 272 |
206
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 273 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 274 |
271 272 273
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝐹 ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 275 |
274
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑦 ) ≠ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ≠ 𝑦 ) ) |
| 276 |
270 275
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ≠ 𝑦 ) |
| 277 |
208 276
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 278 |
277
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) |
| 279 |
|
snex |
⊢ { 〈 1 , 1 〉 } ∈ V |
| 280 |
279 185
|
unex |
⊢ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∈ V |
| 281 |
172 280
|
coex |
⊢ ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ V |
| 282 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 283 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ) |
| 284 |
283
|
neeq1d |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 285 |
284
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 286 |
282 285
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 287 |
281 286 3
|
elab2 |
⊢ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 288 |
204 278 287
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ) |
| 289 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 290 |
206 289
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
| 291 |
230
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 292 |
290 291 219
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ) |
| 293 |
120 5
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 294 |
293
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 295 |
206 294
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) ) ) |
| 296 |
239
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) |
| 297 |
249 242
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ∈ dom 𝑐 ) |
| 298 |
|
funssfv |
⊢ ( ( Fun ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑐 ⊆ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ∧ 𝑀 ∈ dom 𝑐 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) = ( 𝑐 ‘ 𝑀 ) ) |
| 299 |
221 296 297 298
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) = ( 𝑐 ‘ 𝑀 ) ) |
| 300 |
299
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑀 ) ) = ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) |
| 301 |
295 300
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) |
| 302 |
124
|
fveq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 303 |
302 218
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) = 𝑀 ) |
| 304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ◡ 𝐹 ‘ 1 ) = 𝑀 ) |
| 305 |
|
id |
⊢ ( 𝑦 = 𝑀 → 𝑦 = 𝑀 ) |
| 306 |
256 305
|
neeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑐 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑐 ‘ 𝑀 ) ≠ 𝑀 ) ) |
| 307 |
306 259 249
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ≠ 𝑀 ) |
| 308 |
307
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → 𝑀 ≠ ( 𝑐 ‘ 𝑀 ) ) |
| 309 |
304 308
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ◡ 𝐹 ‘ 1 ) ≠ ( 𝑐 ‘ 𝑀 ) ) |
| 310 |
120 250
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ‘ 𝑀 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 311 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑐 ‘ 𝑀 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) = 1 → ( ◡ 𝐹 ‘ 1 ) = ( 𝑐 ‘ 𝑀 ) ) ) |
| 312 |
24 310 311
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) = 1 → ( ◡ 𝐹 ‘ 1 ) = ( 𝑐 ‘ 𝑀 ) ) ) |
| 313 |
312
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( ◡ 𝐹 ‘ 1 ) ≠ ( 𝑐 ‘ 𝑀 ) → ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ≠ 1 ) ) |
| 314 |
309 313
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ≠ 1 ) |
| 315 |
301 314
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) |
| 316 |
292 315
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) |
| 317 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑔 ‘ 1 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) ) |
| 318 |
317
|
eqeq1d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑔 ‘ 1 ) = 𝑀 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ) ) |
| 319 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( 𝑔 ‘ 𝑀 ) = ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ) |
| 320 |
319
|
neeq1d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( 𝑔 ‘ 𝑀 ) ≠ 1 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) |
| 321 |
318 320
|
anbi12d |
⊢ ( 𝑔 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) → ( ( ( 𝑔 ‘ 1 ) = 𝑀 ∧ ( 𝑔 ‘ 𝑀 ) ≠ 1 ) ↔ ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) ) |
| 322 |
321 8
|
elrab2 |
⊢ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐵 ↔ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐴 ∧ ( ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 1 ) = 𝑀 ∧ ( ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ‘ 𝑀 ) ≠ 1 ) ) ) |
| 323 |
288 316 322
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐶 ) → ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ∈ 𝐵 ) |
| 324 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 325 |
|
f1of1 |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 326 |
324 325
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 327 |
|
f1of |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 328 |
324 327
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 329 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 330 |
328 329
|
fcod |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 331 |
206
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 332 |
|
cocan1 |
⊢ ( ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ∘ 𝑏 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) |
| 333 |
326 330 331 332
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) |
| 334 |
|
coass |
⊢ ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) |
| 335 |
124
|
coeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( 𝐹 ∘ 𝐹 ) ) |
| 336 |
|
f1ococnv1 |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 337 |
24 336
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 338 |
335 337
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 339 |
338
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝐹 ) = ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 340 |
339
|
coeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) ) |
| 341 |
|
fcoi2 |
⊢ ( 𝑏 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) → ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) = 𝑏 ) |
| 342 |
329 341
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( I ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ∘ 𝑏 ) = 𝑏 ) |
| 343 |
340 342
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝐹 ) ∘ 𝑏 ) = 𝑏 ) |
| 344 |
334 343
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = 𝑏 ) |
| 345 |
344
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ ( 𝐹 ∘ 𝑏 ) ) = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ 𝑏 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ) ) |
| 346 |
75
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = 1 ) |
| 347 |
230
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) = 1 ) |
| 348 |
346 347
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
| 349 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) ) |
| 350 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
| 351 |
349 350
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) ) |
| 352 |
56 351
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ‘ 1 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 1 ) ) |
| 353 |
348 352
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) |
| 354 |
353
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 355 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 1 } ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 356 |
354 355
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 357 |
177
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) ) |
| 358 |
357
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) ) |
| 359 |
246
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) |
| 360 |
358 359
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 361 |
360
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 362 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 363 |
362
|
raleqdv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( { 1 } ∪ ( 2 ... ( 𝑁 + 1 ) ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 364 |
356 361 363
|
3bitr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 365 |
58
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 366 |
202
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 367 |
|
f1ofn |
⊢ ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 368 |
366 367
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 369 |
|
eqfnfv |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 370 |
365 368 369
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝐹 ∘ 𝑏 ) ‘ 𝑦 ) = ( ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ‘ 𝑦 ) ) ) |
| 371 |
|
fnssres |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 2 ... ( 𝑁 + 1 ) ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
| 372 |
365 120 371
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
| 373 |
193
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 374 |
|
f1ofn |
⊢ ( 𝑐 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) → 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
| 375 |
373 374
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) |
| 376 |
|
eqfnfv |
⊢ ( ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) Fn ( 2 ... ( 𝑁 + 1 ) ) ∧ 𝑐 Fn ( 2 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 377 |
372 375 376
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ‘ 𝑦 ) = ( 𝑐 ‘ 𝑦 ) ) ) |
| 378 |
364 370 377
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ) ) |
| 379 |
|
eqcom |
⊢ ( ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑐 ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
| 380 |
378 379
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝐹 ∘ 𝑏 ) = ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
| 381 |
333 345 380
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑏 = ( 𝐹 ∘ ( { 〈 1 , 1 〉 } ∪ 𝑐 ) ) ↔ 𝑐 = ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
| 382 |
20 183 323 381
|
f1o2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↦ ( ( 𝐹 ∘ 𝑏 ) ↾ ( 2 ... ( 𝑁 + 1 ) ) ) ) : 𝐵 –1-1-onto→ 𝐶 ) |
| 383 |
19 382
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
| 384 |
1 2
|
derangen2 |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) ) |
| 385 |
1
|
derangval |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 386 |
10
|
fveq2i |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
| 387 |
385 386
|
eqtr4di |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝐶 ) ) |
| 388 |
384 387
|
eqtr3d |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( ♯ ‘ 𝐶 ) ) |
| 389 |
164 388
|
ax-mp |
⊢ ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( ♯ ‘ 𝐶 ) |
| 390 |
4 60
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 391 |
|
eluzp1p1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 392 |
390 391
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 393 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 394 |
393
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 395 |
392 394
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 396 |
|
hashfz |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
| 397 |
395 396
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
| 398 |
59
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 399 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 400 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 401 |
398 399 400
|
subsubd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = ( ( ( 𝑁 + 1 ) − 2 ) + 1 ) ) |
| 402 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 403 |
402
|
oveq2i |
⊢ ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = ( ( 𝑁 + 1 ) − 1 ) |
| 404 |
4
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 405 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 406 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 407 |
404 405 406
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 408 |
403 407
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − ( 2 − 1 ) ) = 𝑁 ) |
| 409 |
397 401 408
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) = 𝑁 ) |
| 410 |
409
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁 + 1 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
| 411 |
389 410
|
eqtr3id |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) = ( 𝑆 ‘ 𝑁 ) ) |
| 412 |
383 411
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑆 ‘ 𝑁 ) ) |