Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
3 |
|
subfacp1lem.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
4 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
5 |
4
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
6 |
1 2
|
subfacval |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( 𝐷 ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( 𝐷 ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
8 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
9 |
1
|
derangval |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin → ( 𝐷 ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
11 |
3
|
fveq2i |
⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
12 |
10 11
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ♯ ‘ 𝐴 ) ) |
13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
14 |
4 13
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
15 |
|
eluzfz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
17 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) → 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ) |
19 |
|
ffvelrn |
⊢ ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) ∧ 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
20 |
19
|
expcom |
⊢ ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
21 |
16 18 20
|
syl2im |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) → ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
22 |
21
|
ss2abdv |
⊢ ( 𝑁 ∈ ℕ → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ⊆ { 𝑓 ∣ ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) |
23 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 1 ) = ( 𝑓 ‘ 1 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
25 |
24
|
cbvabv |
⊢ { 𝑔 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } = { 𝑓 ∣ ( 𝑓 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } |
26 |
22 3 25
|
3sstr4g |
⊢ ( 𝑁 ∈ ℕ → 𝐴 ⊆ { 𝑔 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) |
27 |
|
ssabral |
⊢ ( 𝐴 ⊆ { 𝑔 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ↔ ∀ 𝑔 ∈ 𝐴 ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
28 |
26 27
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑔 ∈ 𝐴 ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
29 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ↔ ∀ 𝑔 ∈ 𝐴 ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
30 |
28 29
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → 𝐴 = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) |
31 |
30
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) ) |
32 |
7 12 31
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) ) |
33 |
|
elfz1end |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ ↔ ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
34 |
4 33
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
35 |
|
eleq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 ... 𝑥 ) = ( 1 ... 1 ) ) |
37 |
|
1z |
⊢ 1 ∈ ℤ |
38 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
39 |
37 38
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
40 |
36 39
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 1 ... 𝑥 ) = { 1 } ) |
41 |
40
|
eleq2d |
⊢ ( 𝑥 = 1 → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) ↔ ( 𝑔 ‘ 1 ) ∈ { 1 } ) ) |
42 |
|
fvex |
⊢ ( 𝑔 ‘ 1 ) ∈ V |
43 |
42
|
elsn |
⊢ ( ( 𝑔 ‘ 1 ) ∈ { 1 } ↔ ( 𝑔 ‘ 1 ) = 1 ) |
44 |
41 43
|
bitrdi |
⊢ ( 𝑥 = 1 → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) ↔ ( 𝑔 ‘ 1 ) = 1 ) ) |
45 |
44
|
rabbidv |
⊢ ( 𝑥 = 1 → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) |
46 |
45
|
fveq2d |
⊢ ( 𝑥 = 1 → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) ) |
47 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 − 1 ) = ( 1 − 1 ) ) |
48 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
49 |
47 48
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 𝑥 − 1 ) = 0 ) |
50 |
49
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
51 |
46 50
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ↔ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
52 |
35 51
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ↔ ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
53 |
52
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ↔ ( 𝑁 ∈ ℕ → ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
54 |
|
eleq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
55 |
|
oveq2 |
⊢ ( 𝑥 = 𝑚 → ( 1 ... 𝑥 ) = ( 1 ... 𝑚 ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) ↔ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ) ) |
57 |
56
|
rabbidv |
⊢ ( 𝑥 = 𝑚 → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) |
58 |
57
|
fveq2d |
⊢ ( 𝑥 = 𝑚 → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) ) |
59 |
|
oveq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 − 1 ) = ( 𝑚 − 1 ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
61 |
58 60
|
eqeq12d |
⊢ ( 𝑥 = 𝑚 → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ↔ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
62 |
54 61
|
imbi12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ↔ ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
63 |
62
|
imbi2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
64 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
65 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 1 ... 𝑥 ) = ( 1 ... ( 𝑚 + 1 ) ) ) |
66 |
65
|
eleq2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) ↔ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) ) ) |
67 |
66
|
rabbidv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) |
68 |
67
|
fveq2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) ) |
69 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑚 + 1 ) − 1 ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
71 |
68 70
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ↔ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
72 |
64 71
|
imbi12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ↔ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
73 |
72
|
imbi2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ↔ ( 𝑁 ∈ ℕ → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
74 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( 1 ... 𝑥 ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
76 |
75
|
eleq2d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) ↔ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
77 |
76
|
rabbidv |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } = { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) |
78 |
77
|
fveq2d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) ) |
79 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
80 |
79
|
oveq1d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
81 |
78 80
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ↔ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
82 |
74 81
|
imbi12d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ↔ ( ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
83 |
82
|
imbi2d |
⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑥 ) } ) = ( ( 𝑥 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ↔ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
84 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
85 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 1 ) ) |
86 |
|
id |
⊢ ( 𝑦 = 1 → 𝑦 = 1 ) |
87 |
85 86
|
neeq12d |
⊢ ( 𝑦 = 1 → ( ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
88 |
87
|
rspcv |
⊢ ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 → ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
89 |
16 88
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 → ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
90 |
89
|
adantld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) → ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
91 |
90
|
ss2abdv |
⊢ ( 𝑁 ∈ ℕ → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ⊆ { 𝑓 ∣ ( 𝑓 ‘ 1 ) ≠ 1 } ) |
92 |
|
df-ne |
⊢ ( ( 𝑔 ‘ 1 ) ≠ 1 ↔ ¬ ( 𝑔 ‘ 1 ) = 1 ) |
93 |
23
|
neeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 1 ) ≠ 1 ↔ ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
94 |
92 93
|
bitr3id |
⊢ ( 𝑔 = 𝑓 → ( ¬ ( 𝑔 ‘ 1 ) = 1 ↔ ( 𝑓 ‘ 1 ) ≠ 1 ) ) |
95 |
94
|
cbvabv |
⊢ { 𝑔 ∣ ¬ ( 𝑔 ‘ 1 ) = 1 } = { 𝑓 ∣ ( 𝑓 ‘ 1 ) ≠ 1 } |
96 |
91 3 95
|
3sstr4g |
⊢ ( 𝑁 ∈ ℕ → 𝐴 ⊆ { 𝑔 ∣ ¬ ( 𝑔 ‘ 1 ) = 1 } ) |
97 |
|
ssabral |
⊢ ( 𝐴 ⊆ { 𝑔 ∣ ¬ ( 𝑔 ‘ 1 ) = 1 } ↔ ∀ 𝑔 ∈ 𝐴 ¬ ( 𝑔 ‘ 1 ) = 1 ) |
98 |
96 97
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑔 ∈ 𝐴 ¬ ( 𝑔 ‘ 1 ) = 1 ) |
99 |
|
rabeq0 |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } = ∅ ↔ ∀ 𝑔 ∈ 𝐴 ¬ ( 𝑔 ‘ 1 ) = 1 ) |
100 |
98 99
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } = ∅ ) |
101 |
100
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( ♯ ‘ ∅ ) ) |
102 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
103 |
1 2
|
subfacf |
⊢ 𝑆 : ℕ0 ⟶ ℕ0 |
104 |
103
|
ffvelrni |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ 𝑁 ) ∈ ℕ0 ) |
105 |
102 104
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ 𝑁 ) ∈ ℕ0 ) |
106 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
107 |
103
|
ffvelrni |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( 𝑆 ‘ ( 𝑁 − 1 ) ) ∈ ℕ0 ) |
108 |
106 107
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ ( 𝑁 − 1 ) ) ∈ ℕ0 ) |
109 |
105 108
|
nn0addcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ∈ ℕ0 ) |
110 |
109
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
111 |
110
|
mul02d |
⊢ ( 𝑁 ∈ ℕ → ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = 0 ) |
112 |
84 101 111
|
3eqtr4a |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
113 |
112
|
a1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = 1 } ) = ( 0 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
114 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℕ ) |
115 |
114 13
|
eleqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
116 |
|
peano2fzr |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
117 |
115 116
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
118 |
117
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
119 |
118
|
imim1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
120 |
|
oveq1 |
⊢ ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) = ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
121 |
|
elfzp1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) ↔ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∨ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) ) ) |
122 |
115 121
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) ↔ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∨ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) ) ) |
123 |
122
|
rabbidv |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∨ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) } ) |
124 |
|
unrab |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∨ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) } |
125 |
123 124
|
eqtr4di |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } = ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) |
126 |
125
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
127 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin |
128 |
|
deranglem |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin → { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin ) |
129 |
127 128
|
ax-mp |
⊢ { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ∈ Fin |
130 |
3 129
|
eqeltri |
⊢ 𝐴 ∈ Fin |
131 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ⊆ 𝐴 |
132 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ⊆ 𝐴 ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∈ Fin ) |
133 |
130 131 132
|
mp2an |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∈ Fin |
134 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ⊆ 𝐴 |
135 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ⊆ 𝐴 ) → { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ∈ Fin ) |
136 |
130 134 135
|
mp2an |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ∈ Fin |
137 |
|
inrab |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) } |
138 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ |
139 |
42
|
elsn |
⊢ ( ( 𝑔 ‘ 1 ) ∈ { ( 𝑚 + 1 ) } ↔ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) |
140 |
|
inelcm |
⊢ ( ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) ∈ { ( 𝑚 + 1 ) } ) → ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) ≠ ∅ ) |
141 |
139 140
|
sylan2br |
⊢ ( ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) → ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) ≠ ∅ ) |
142 |
141
|
necon2bi |
⊢ ( ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ → ¬ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) ) |
143 |
138 142
|
ax-mp |
⊢ ¬ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) |
144 |
143
|
rgenw |
⊢ ∀ 𝑔 ∈ 𝐴 ¬ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) |
145 |
|
rabeq0 |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) } = ∅ ↔ ∀ 𝑔 ∈ 𝐴 ¬ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) ) |
146 |
144 145
|
mpbir |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ) } = ∅ |
147 |
137 146
|
eqtri |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = ∅ |
148 |
|
hashun |
⊢ ( ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ∈ Fin ∧ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
149 |
133 136 147 148
|
mp3an |
⊢ ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) |
150 |
126 149
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
151 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
152 |
151
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℂ ) |
153 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
154 |
153
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
155 |
152 154 154
|
addsubd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑚 + 1 ) − 1 ) = ( ( 𝑚 − 1 ) + 1 ) ) |
156 |
155
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( ( 𝑚 − 1 ) + 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
157 |
|
subcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑚 − 1 ) ∈ ℂ ) |
158 |
152 153 157
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑚 − 1 ) ∈ ℂ ) |
159 |
109
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ∈ ℕ0 ) |
160 |
159
|
nn0cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
161 |
158 154 160
|
adddird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑚 − 1 ) + 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( 1 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
162 |
160
|
mulid2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) |
163 |
|
exmidne |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) |
164 |
|
orcom |
⊢ ( ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
165 |
163 164
|
mpbi |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) |
166 |
165
|
biantru |
⊢ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ↔ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
167 |
|
andi |
⊢ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ∨ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ↔ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∨ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
168 |
166 167
|
bitri |
⊢ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ↔ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∨ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
169 |
168
|
rabbii |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } = { 𝑔 ∈ 𝐴 ∣ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∨ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) } |
170 |
|
unrab |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) = { 𝑔 ∈ 𝐴 ∣ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∨ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) } |
171 |
169 170
|
eqtr4i |
⊢ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } = ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) |
172 |
171
|
fveq2i |
⊢ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) |
173 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ⊆ 𝐴 |
174 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ⊆ 𝐴 ) → { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∈ Fin ) |
175 |
130 173 174
|
mp2an |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∈ Fin |
176 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ⊆ 𝐴 |
177 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ⊆ 𝐴 ) → { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ∈ Fin ) |
178 |
130 176 177
|
mp2an |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ∈ Fin |
179 |
|
inrab |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) = { 𝑔 ∈ 𝐴 ∣ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) } |
180 |
|
simpr |
⊢ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) |
181 |
180
|
necon3ai |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 → ¬ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
182 |
181
|
adantl |
⊢ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) → ¬ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
183 |
|
imnan |
⊢ ( ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) → ¬ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ↔ ¬ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
184 |
182 183
|
mpbi |
⊢ ¬ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
185 |
184
|
rgenw |
⊢ ∀ 𝑔 ∈ 𝐴 ¬ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
186 |
|
rabeq0 |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) } = ∅ ↔ ∀ 𝑔 ∈ 𝐴 ¬ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
187 |
185 186
|
mpbir |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ∧ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ) } = ∅ |
188 |
179 187
|
eqtri |
⊢ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) = ∅ |
189 |
|
hashun |
⊢ ( ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∈ Fin ∧ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ∈ Fin ∧ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∩ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) ) |
190 |
175 178 188 189
|
mp3an |
⊢ ( ♯ ‘ ( { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ∪ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) |
191 |
172 190
|
eqtri |
⊢ ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) |
192 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℕ ) |
193 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
194 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
195 |
194
|
eqeq2i |
⊢ ( ( 𝑚 + 1 ) = ( 0 + 1 ) ↔ ( 𝑚 + 1 ) = 1 ) |
196 |
|
0cn |
⊢ 0 ∈ ℂ |
197 |
|
addcan2 |
⊢ ( ( 𝑚 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) = ( 0 + 1 ) ↔ 𝑚 = 0 ) ) |
198 |
196 153 197
|
mp3an23 |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑚 + 1 ) = ( 0 + 1 ) ↔ 𝑚 = 0 ) ) |
199 |
151 198
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) = ( 0 + 1 ) ↔ 𝑚 = 0 ) ) |
200 |
195 199
|
bitr3id |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) = 1 ↔ 𝑚 = 0 ) ) |
201 |
200
|
necon3bbid |
⊢ ( 𝑚 ∈ ℕ → ( ¬ ( 𝑚 + 1 ) = 1 ↔ 𝑚 ≠ 0 ) ) |
202 |
193 201
|
mpbird |
⊢ ( 𝑚 ∈ ℕ → ¬ ( 𝑚 + 1 ) = 1 ) |
203 |
202
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ¬ ( 𝑚 + 1 ) = 1 ) |
204 |
14
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
205 |
|
elfzp12 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝑚 + 1 ) = 1 ∨ ( 𝑚 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
206 |
204 205
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝑚 + 1 ) = 1 ∨ ( 𝑚 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
207 |
206
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑚 + 1 ) = 1 ∨ ( 𝑚 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
208 |
207
|
ord |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ¬ ( 𝑚 + 1 ) = 1 → ( 𝑚 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
209 |
203 208
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑚 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) |
210 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
211 |
210
|
oveq1i |
⊢ ( 2 ... ( 𝑁 + 1 ) ) = ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) |
212 |
209 211
|
eleqtrrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑚 + 1 ) ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
213 |
|
ovex |
⊢ ( 𝑚 + 1 ) ∈ V |
214 |
|
eqid |
⊢ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) |
215 |
|
fveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ‘ 1 ) = ( ℎ ‘ 1 ) ) |
216 |
215
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ↔ ( ℎ ‘ 1 ) = ( 𝑚 + 1 ) ) ) |
217 |
|
fveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = ( ℎ ‘ ( 𝑚 + 1 ) ) ) |
218 |
217
|
neeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ↔ ( ℎ ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ) |
219 |
216 218
|
anbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ↔ ( ( ℎ ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ℎ ‘ ( 𝑚 + 1 ) ) ≠ 1 ) ) ) |
220 |
219
|
cbvrabv |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ℎ ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } |
221 |
|
eqid |
⊢ ( ( I ↾ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ) ∪ { 〈 1 , ( 𝑚 + 1 ) 〉 , 〈 ( 𝑚 + 1 ) , 1 〉 } ) = ( ( I ↾ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ) ∪ { 〈 1 , ( 𝑚 + 1 ) 〉 , 〈 ( 𝑚 + 1 ) , 1 〉 } ) |
222 |
|
f1oeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ↔ 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ) ) |
223 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ 𝑦 ) ) |
224 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
225 |
223 224
|
neeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ) ) |
226 |
225
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ) |
227 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
228 |
227
|
neeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
229 |
228
|
ralbidv |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
230 |
226 229
|
syl5bb |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑧 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
231 |
222 230
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) ↔ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
232 |
231
|
cbvabv |
⊢ { 𝑔 ∣ ( 𝑔 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) } = { 𝑓 ∣ ( 𝑓 : ( 2 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 2 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 2 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
233 |
1 2 3 192 212 213 214 220 221 232
|
subfacp1lem5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ) = ( 𝑆 ‘ 𝑁 ) ) |
234 |
217
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ↔ ( ℎ ‘ ( 𝑚 + 1 ) ) = 1 ) ) |
235 |
216 234
|
anbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) ↔ ( ( ℎ ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ℎ ‘ ( 𝑚 + 1 ) ) = 1 ) ) ) |
236 |
235
|
cbvrabv |
⊢ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( ℎ ‘ ( 𝑚 + 1 ) ) = 1 ) } |
237 |
|
f1oeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ↔ 𝑓 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ) ) |
238 |
225
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ) |
239 |
228
|
ralbidv |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
240 |
238 239
|
syl5bb |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑧 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
241 |
237 240
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) ↔ ( 𝑓 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ∧ ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
242 |
241
|
cbvabv |
⊢ { 𝑔 ∣ ( 𝑔 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) } = { 𝑓 ∣ ( 𝑓 : ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ∧ ∀ 𝑦 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑚 + 1 ) } ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
243 |
1 2 3 192 212 213 214 236 242
|
subfacp1lem3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) = ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) |
244 |
233 243
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ≠ 1 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) ∧ ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 1 ) } ) ) = ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) |
245 |
191 244
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) = ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) |
246 |
162 245
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) |
247 |
246
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( 1 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) = ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
248 |
156 161 247
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) |
249 |
150 248
|
eqeq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ↔ ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) = ( ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) + ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) = ( 𝑚 + 1 ) } ) ) ) ) |
250 |
120 249
|
syl5ibr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
251 |
250
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
252 |
251
|
a2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
253 |
119 252
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
254 |
253
|
expcom |
⊢ ( 𝑚 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
255 |
254
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑁 ∈ ℕ → ( 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... 𝑚 ) } ) = ( ( 𝑚 − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑚 + 1 ) ) } ) = ( ( ( 𝑚 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) ) |
256 |
53 63 73 83 113 255
|
nnind |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) ) |
257 |
4 256
|
mpcom |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) ) |
258 |
34 257
|
mpd |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑔 ∈ 𝐴 ∣ ( 𝑔 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) } ) = ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
259 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
260 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
261 |
259 153 260
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
262 |
261
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) − 1 ) · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) = ( 𝑁 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |
263 |
32 258 262
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |