| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 0 ) ) |
| 4 |
1 2
|
subfac0 |
⊢ ( 𝑆 ‘ 0 ) = 1 |
| 5 |
3 4
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑆 ‘ 𝑥 ) = 1 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ! ‘ 𝑥 ) = ( ! ‘ 0 ) ) |
| 7 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ! ‘ 𝑥 ) = 1 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 ... 𝑥 ) = ( 0 ... 0 ) ) |
| 10 |
9
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 11 |
8 10
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 12 |
5 11
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ 1 = ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 13 |
|
fv0p1e1 |
⊢ ( 𝑥 = 0 → ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( 𝑆 ‘ 1 ) ) |
| 14 |
1 2
|
subfac1 |
⊢ ( 𝑆 ‘ 1 ) = 0 |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑆 ‘ ( 𝑥 + 1 ) ) = 0 ) |
| 16 |
|
fv0p1e1 |
⊢ ( 𝑥 = 0 → ( ! ‘ ( 𝑥 + 1 ) ) = ( ! ‘ 1 ) ) |
| 17 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
| 18 |
16 17
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ! ‘ ( 𝑥 + 1 ) ) = 1 ) |
| 19 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) ) |
| 20 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 21 |
19 20
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 0 ... ( 𝑥 + 1 ) ) = ( 0 ... 1 ) ) |
| 23 |
22
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 24 |
18 23
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 25 |
15 24
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ 0 = ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 26 |
12 25
|
anbi12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ↔ ( 1 = ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ 0 = ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑚 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑚 ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑥 = 𝑚 → ( 0 ... 𝑥 ) = ( 0 ... 𝑚 ) ) |
| 30 |
29
|
sumeq1d |
⊢ ( 𝑥 = 𝑚 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 31 |
28 30
|
oveq12d |
⊢ ( 𝑥 = 𝑚 → ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 32 |
27 31
|
eqeq12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 33 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( 𝑆 ‘ ( 𝑚 + 1 ) ) ) |
| 34 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑚 → ( ! ‘ ( 𝑥 + 1 ) ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 + 1 ) = ( 𝑚 + 1 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = 𝑚 → ( 0 ... ( 𝑥 + 1 ) ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
| 37 |
36
|
sumeq1d |
⊢ ( 𝑥 = 𝑚 → Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 38 |
34 37
|
oveq12d |
⊢ ( 𝑥 = 𝑚 → ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 39 |
33 38
|
eqeq12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 40 |
32 39
|
anbi12d |
⊢ ( 𝑥 = 𝑚 → ( ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑚 + 1 ) ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 0 ... 𝑥 ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
| 44 |
43
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 45 |
42 44
|
oveq12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 46 |
41 45
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 47 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 48 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ! ‘ ( 𝑥 + 1 ) ) = ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑚 + 1 ) + 1 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 0 ... ( 𝑥 + 1 ) ) = ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 51 |
50
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 52 |
48 51
|
oveq12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 53 |
47 52
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 54 |
46 53
|
anbi12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 55 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑁 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 0 ... 𝑥 ) = ( 0 ... 𝑁 ) ) |
| 58 |
57
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 59 |
56 58
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 60 |
55 59
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 61 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( 𝑆 ‘ ( 𝑁 + 1 ) ) ) |
| 62 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ ( 𝑥 + 1 ) ) = ( ! ‘ ( 𝑁 + 1 ) ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 0 ... ( 𝑥 + 1 ) ) = ( 0 ... ( 𝑁 + 1 ) ) ) |
| 65 |
64
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 66 |
62 65
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 67 |
61 66
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 68 |
60 67
|
anbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑆 ‘ 𝑥 ) = ( ( ! ‘ 𝑥 ) · Σ 𝑘 ∈ ( 0 ... 𝑥 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑥 + 1 ) ) = ( ( ! ‘ ( 𝑥 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑥 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑆 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 69 |
|
0z |
⊢ 0 ∈ ℤ |
| 70 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 71 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ 0 ) ) |
| 72 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 73 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
| 74 |
72 73
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
| 75 |
71 74
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( - 1 ↑ 𝑘 ) = 1 ) |
| 76 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = ( ! ‘ 0 ) ) |
| 77 |
76 7
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = 1 ) |
| 78 |
75 77
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 1 / 1 ) ) |
| 79 |
70
|
div1i |
⊢ ( 1 / 1 ) = 1 |
| 80 |
78 79
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 81 |
80
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 82 |
69 70 81
|
mp2an |
⊢ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 |
| 83 |
82
|
oveq2i |
⊢ ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 1 · 1 ) |
| 84 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 85 |
83 84
|
eqtr2i |
⊢ 1 = ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 86 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 87 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 88 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ 1 ) ) |
| 89 |
|
exp1 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 1 ) = - 1 ) |
| 90 |
72 89
|
ax-mp |
⊢ ( - 1 ↑ 1 ) = - 1 |
| 91 |
88 90
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( - 1 ↑ 𝑘 ) = - 1 ) |
| 92 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( ! ‘ 𝑘 ) = ( ! ‘ 1 ) ) |
| 93 |
92 17
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ! ‘ 𝑘 ) = 1 ) |
| 94 |
91 93
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( - 1 / 1 ) ) |
| 95 |
72
|
div1i |
⊢ ( - 1 / 1 ) = - 1 |
| 96 |
94 95
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = - 1 ) |
| 97 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 98 |
|
reexpcl |
⊢ ( ( - 1 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℝ ) |
| 99 |
97 98
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ ℝ ) |
| 100 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 101 |
99 100
|
nndivred |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 103 |
102
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 104 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 105 |
104 82
|
pm3.2i |
⊢ ( 0 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 106 |
105
|
a1i |
⊢ ( ⊤ → ( 0 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) ) |
| 107 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 108 |
107
|
a1i |
⊢ ( ⊤ → ( 1 + - 1 ) = 0 ) |
| 109 |
86 87 96 103 106 108
|
fsump1i |
⊢ ( ⊤ → ( 1 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 0 ) ) |
| 110 |
109
|
mptru |
⊢ ( 1 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 0 ) |
| 111 |
110
|
simpri |
⊢ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 0 |
| 112 |
111
|
oveq2i |
⊢ ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 1 · 0 ) |
| 113 |
70
|
mul01i |
⊢ ( 1 · 0 ) = 0 |
| 114 |
112 113
|
eqtr2i |
⊢ 0 = ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 115 |
85 114
|
pm3.2i |
⊢ ( 1 = ( 1 · Σ 𝑘 ∈ ( 0 ... 0 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ 0 = ( 1 · Σ 𝑘 ∈ ( 0 ... 1 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 116 |
|
simpr |
⊢ ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 117 |
116
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 118 |
|
oveq12 |
⊢ ( ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 119 |
118
|
ancoms |
⊢ ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 120 |
119
|
oveq2d |
⊢ ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 121 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
| 122 |
1 2
|
subfacp1 |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 123 |
121 122
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 124 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 125 |
|
pncan |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 126 |
124 70 125
|
sylancl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 127 |
126
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑆 ‘ ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑆 ‘ 𝑚 ) ) |
| 128 |
127
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) ) |
| 129 |
128
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) = ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) ) ) |
| 130 |
123 129
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) ) ) |
| 131 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 132 |
|
peano2nn0 |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ0 ) |
| 133 |
131 132
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ0 ) |
| 134 |
|
faccl |
⊢ ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℕ ) |
| 135 |
133 134
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℕ ) |
| 136 |
135
|
nncnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℂ ) |
| 137 |
|
fzfid |
⊢ ( 𝑚 ∈ ℕ0 → ( 0 ... ( 𝑚 + 1 ) ) ∈ Fin ) |
| 138 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 139 |
138
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 140 |
139 102
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 141 |
137 140
|
fsumcl |
⊢ ( 𝑚 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 142 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( ( 𝑚 + 1 ) + 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℂ ) |
| 143 |
72 133 142
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℂ ) |
| 144 |
135
|
nnne0d |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ≠ 0 ) |
| 145 |
143 136 144
|
divcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ∈ ℂ ) |
| 146 |
136 141 145
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) = ( ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) ) |
| 147 |
|
id |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℕ0 ) |
| 148 |
147 86
|
eleqtrdi |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 149 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) |
| 150 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ! ‘ 𝑘 ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 151 |
149 150
|
oveq12d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
| 152 |
148 140 151
|
fsump1 |
⊢ ( 𝑚 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 153 |
152
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 154 |
|
fzfid |
⊢ ( 𝑚 ∈ ℕ0 → ( 0 ... 𝑚 ) ∈ Fin ) |
| 155 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) |
| 156 |
155
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝑘 ∈ ℕ0 ) |
| 157 |
156 102
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 158 |
154 157
|
fsumcl |
⊢ ( 𝑚 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 159 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 𝑚 + 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 160 |
72 131 159
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( - 1 ↑ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 161 |
|
faccl |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) ∈ ℕ ) |
| 162 |
131 161
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) ∈ ℕ ) |
| 163 |
162
|
nncnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 164 |
162
|
nnne0d |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) ≠ 0 ) |
| 165 |
160 163 164
|
divcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ∈ ℂ ) |
| 166 |
136 158 165
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) = ( ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 167 |
|
facp1 |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 168 |
131 167
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 169 |
|
facp1 |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
| 170 |
|
faccl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ 𝑚 ) ∈ ℕ ) |
| 171 |
170
|
nncnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ 𝑚 ) ∈ ℂ ) |
| 172 |
121
|
nncnd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℂ ) |
| 173 |
171 172
|
mulcomd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) = ( ( 𝑚 + 1 ) · ( ! ‘ 𝑚 ) ) ) |
| 174 |
169 173
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( 𝑚 + 1 ) · ( ! ‘ 𝑚 ) ) ) |
| 175 |
174
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( 𝑚 + 1 ) · ( ! ‘ 𝑚 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 176 |
133
|
nn0cnd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) ∈ ℂ ) |
| 177 |
172 171 176
|
mulassd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) · ( ! ‘ 𝑚 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 178 |
168 175 177
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 179 |
178
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 180 |
136 160 163 164
|
div12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 181 |
168
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
| 182 |
176 163 164
|
divcan3d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) = ( ( 𝑚 + 1 ) + 1 ) ) |
| 183 |
181 182
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) = ( ( 𝑚 + 1 ) + 1 ) ) |
| 184 |
183
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 185 |
180 184
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 186 |
179 185
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) = ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 187 |
153 166 186
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 188 |
143 136 144
|
divcan2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) = ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 189 |
187 188
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) = ( ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 190 |
171 176
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℂ ) |
| 191 |
172 190 158
|
mulassd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 192 |
72
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → - 1 ∈ ℂ ) |
| 193 |
160 176 192
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( ( 𝑚 + 1 ) + 1 ) + - 1 ) ) = ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · - 1 ) ) ) |
| 194 |
|
negsub |
⊢ ( ( ( ( 𝑚 + 1 ) + 1 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑚 + 1 ) + 1 ) + - 1 ) = ( ( ( 𝑚 + 1 ) + 1 ) − 1 ) ) |
| 195 |
176 70 194
|
sylancl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) + 1 ) + - 1 ) = ( ( ( 𝑚 + 1 ) + 1 ) − 1 ) ) |
| 196 |
|
pncan |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑚 + 1 ) + 1 ) − 1 ) = ( 𝑚 + 1 ) ) |
| 197 |
172 70 196
|
sylancl |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) + 1 ) − 1 ) = ( 𝑚 + 1 ) ) |
| 198 |
195 197
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) + 1 ) + - 1 ) = ( 𝑚 + 1 ) ) |
| 199 |
198
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( ( 𝑚 + 1 ) + 1 ) + - 1 ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( 𝑚 + 1 ) ) ) |
| 200 |
193 199
|
eqtr3d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · - 1 ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( 𝑚 + 1 ) ) ) |
| 201 |
|
expp1 |
⊢ ( ( - 1 ∈ ℂ ∧ ( 𝑚 + 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · - 1 ) ) |
| 202 |
72 131 201
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · - 1 ) ) |
| 203 |
202
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) = ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · - 1 ) ) ) |
| 204 |
172 160
|
mulcomd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) · ( - 1 ↑ ( 𝑚 + 1 ) ) ) = ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( 𝑚 + 1 ) ) ) |
| 205 |
200 203 204
|
3eqtr4d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) = ( ( 𝑚 + 1 ) · ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 206 |
191 205
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) ) = ( ( ( 𝑚 + 1 ) · ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) + ( ( 𝑚 + 1 ) · ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) ) |
| 207 |
172 190
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) ∈ ℂ ) |
| 208 |
207 158
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 209 |
160 176
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ∈ ℂ ) |
| 210 |
208 209 143
|
addassd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) = ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) |
| 211 |
190 158
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 212 |
172 211 160
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) · ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) = ( ( ( 𝑚 + 1 ) · ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) + ( ( 𝑚 + 1 ) · ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) ) |
| 213 |
206 210 212
|
3eqtr4d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ( ( 𝑚 + 1 ) · ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) · ( ( 𝑚 + 1 ) + 1 ) ) ) + ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) ) |
| 214 |
146 189 213
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) ) |
| 215 |
131 86
|
eleqtrdi |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 216 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 217 |
216
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 218 |
217 102
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 219 |
|
oveq2 |
⊢ ( 𝑘 = ( ( 𝑚 + 1 ) + 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 220 |
|
fveq2 |
⊢ ( 𝑘 = ( ( 𝑚 + 1 ) + 1 ) → ( ! ‘ 𝑘 ) = ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) |
| 221 |
219 220
|
oveq12d |
⊢ ( 𝑘 = ( ( 𝑚 + 1 ) + 1 ) → ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) |
| 222 |
215 218 221
|
fsump1 |
⊢ ( 𝑚 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) |
| 223 |
222
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( ( 𝑚 + 1 ) + 1 ) ) / ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) ) ) ) ) |
| 224 |
163 158
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 225 |
171 158
|
mulcld |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 226 |
224 160 225
|
add32d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) = ( ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 227 |
152
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 228 |
163 158 165
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · ( Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 229 |
160 163 164
|
divcan2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) |
| 230 |
229
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ ( 𝑚 + 1 ) ) · ( ( - 1 ↑ ( 𝑚 + 1 ) ) / ( ! ‘ ( 𝑚 + 1 ) ) ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 231 |
227 228 230
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 232 |
231
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) = ( ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 233 |
70
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℂ ) |
| 234 |
171 172 233
|
adddid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) + ( ( ! ‘ 𝑚 ) · 1 ) ) ) |
| 235 |
169
|
eqcomd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 236 |
171
|
mulridd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · 1 ) = ( ! ‘ 𝑚 ) ) |
| 237 |
235 236
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) + ( ( ! ‘ 𝑚 ) · 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) + ( ! ‘ 𝑚 ) ) ) |
| 238 |
234 237
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) + ( ! ‘ 𝑚 ) ) ) |
| 239 |
238
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) + ( ! ‘ 𝑚 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 240 |
163 171 158
|
adddird |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑚 + 1 ) ) + ( ! ‘ 𝑚 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 241 |
239 240
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 242 |
241
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) = ( ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 243 |
226 232 242
|
3eqtr4d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) = ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) |
| 244 |
243
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) · ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( - 1 ↑ ( 𝑚 + 1 ) ) ) ) ) |
| 245 |
214 223 244
|
3eqtr4d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 246 |
130 245
|
eqeq12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ↔ ( ( 𝑚 + 1 ) · ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) + ( 𝑆 ‘ 𝑚 ) ) ) = ( ( 𝑚 + 1 ) · ( ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) + ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ) |
| 247 |
120 246
|
imbitrrid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 248 |
117 247
|
jcad |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑆 ‘ 𝑚 ) = ( ( ! ‘ 𝑚 ) · Σ 𝑘 ∈ ( 0 ... 𝑚 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) → ( ( 𝑆 ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ ( 𝑚 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( ( 𝑚 + 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑚 + 1 ) + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 249 |
26 40 54 68 115 248
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑆 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∧ ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 250 |
249
|
simpld |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |