Metamath Proof Explorer


Theorem subg0

Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses subg0.h 𝐻 = ( 𝐺s 𝑆 )
subg0.i 0 = ( 0g𝐺 )
Assertion subg0 ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g𝐻 ) )

Proof

Step Hyp Ref Expression
1 subg0.h 𝐻 = ( 𝐺s 𝑆 )
2 subg0.i 0 = ( 0g𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 1 3 ressplusg ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g𝐺 ) = ( +g𝐻 ) )
5 4 oveqd ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g𝐻 ) ( +g𝐺 ) ( 0g𝐻 ) ) = ( ( 0g𝐻 ) ( +g𝐻 ) ( 0g𝐻 ) ) )
6 1 subggrp ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )
7 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
8 eqid ( 0g𝐻 ) = ( 0g𝐻 )
9 7 8 grpidcl ( 𝐻 ∈ Grp → ( 0g𝐻 ) ∈ ( Base ‘ 𝐻 ) )
10 6 9 syl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐻 ) ∈ ( Base ‘ 𝐻 ) )
11 eqid ( +g𝐻 ) = ( +g𝐻 )
12 7 11 8 grplid ( ( 𝐻 ∈ Grp ∧ ( 0g𝐻 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 0g𝐻 ) ( +g𝐻 ) ( 0g𝐻 ) ) = ( 0g𝐻 ) )
13 6 10 12 syl2anc ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g𝐻 ) ( +g𝐻 ) ( 0g𝐻 ) ) = ( 0g𝐻 ) )
14 5 13 eqtrd ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g𝐻 ) ( +g𝐺 ) ( 0g𝐻 ) ) = ( 0g𝐻 ) )
15 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
16 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
17 16 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
18 1 subgbas ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) )
19 10 18 eleqtrrd ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐻 ) ∈ 𝑆 )
20 17 19 sseldd ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐻 ) ∈ ( Base ‘ 𝐺 ) )
21 16 3 2 grpid ( ( 𝐺 ∈ Grp ∧ ( 0g𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g𝐻 ) ( +g𝐺 ) ( 0g𝐻 ) ) = ( 0g𝐻 ) ↔ 0 = ( 0g𝐻 ) ) )
22 15 20 21 syl2anc ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( 0g𝐻 ) ( +g𝐺 ) ( 0g𝐻 ) ) = ( 0g𝐻 ) ↔ 0 = ( 0g𝐻 ) ) )
23 14 22 mpbid ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g𝐻 ) )