| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subg0.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
subg0.i |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 4 |
1 3
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 5 |
4
|
oveqd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) ) |
| 6 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 9 |
7 8
|
grpidcl |
⊢ ( 𝐻 ∈ Grp → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
| 10 |
6 9
|
syl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 12 |
7 11 8
|
grplid |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 13 |
6 10 12
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 14 |
5 13
|
eqtrd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 17 |
16
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 19 |
10 18
|
eleqtrrd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ 𝑆 ) |
| 20 |
17 19
|
sseldd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
| 21 |
16 3 2
|
grpid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
| 22 |
15 20 21
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
| 23 |
14 22
|
mpbid |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ 𝐻 ) ) |