Step |
Hyp |
Ref |
Expression |
1 |
|
subg0.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
|
subg0.i |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 3
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
5 |
4
|
oveqd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) ) |
6 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
9 |
7 8
|
grpidcl |
⊢ ( 𝐻 ∈ Grp → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
12 |
7 11 8
|
grplid |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
13 |
6 10 12
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
14 |
5 13
|
eqtrd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
15 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
17 |
16
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
18 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
19 |
10 18
|
eleqtrrd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ 𝑆 ) |
20 |
17 19
|
sseldd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
21 |
16 3 2
|
grpid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
22 |
15 20 21
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
23 |
14 22
|
mpbid |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ 𝐻 ) ) |