Step |
Hyp |
Ref |
Expression |
1 |
|
subg0cl.i |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) |
3 |
2
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
4 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) |
6 |
4 5
|
grpidcl |
⊢ ( ( 𝐺 ↾s 𝑆 ) ∈ Grp → ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
7 |
3 6
|
syl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
8 |
2 1
|
subg0 |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
9 |
2
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
10 |
7 8 9
|
3eltr4d |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |