| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgabl.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
1 4
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 7 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Abel ) |
| 10 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 12 |
11
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 15 |
13 14
|
sseldd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 16 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 17 |
13 16
|
sseldd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 18 |
11 4
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 19 |
9 15 17 18
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 20 |
3 6 8 19
|
isabld |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel ) |