| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subgacs.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								2
							 | 
							issubg3 | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							submss | 
							⊢ ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  →  𝑠  ⊆  𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  ( SubMnd ‘ 𝐺 ) )  →  𝑠  ⊆  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑠  ∈  𝒫  𝐵  ↔  𝑠  ⊆  𝐵 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  ( SubMnd ‘ 𝐺 ) )  →  𝑠  ∈  𝒫  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							eleq2w | 
							⊢ ( 𝑦  =  𝑠  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦  ↔  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							raleqbi1dv | 
							⊢ ( 𝑦  =  𝑠  →  ( ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦  ↔  ∀ 𝑥  ∈  𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elrab3 | 
							⊢ ( 𝑠  ∈  𝒫  𝐵  →  ( 𝑠  ∈  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 }  ↔  ∀ 𝑥  ∈  𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  ( SubMnd ‘ 𝐺 ) )  →  ( 𝑠  ∈  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 }  ↔  ∀ 𝑥  ∈  𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							pm5.32da | 
							⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑠  ∈  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } )  ↔  ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑠 ) ) )  | 
						
						
							| 13 | 
							
								3 12
							 | 
							bitr4d | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑠  ∈  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑠  ∈  ( ( SubMnd ‘ 𝐺 )  ∩  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } )  ↔  ( 𝑠  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑠  ∈  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitr4di | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ↔  𝑠  ∈  ( ( SubMnd ‘ 𝐺 )  ∩  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqrdv | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  =  ( ( SubMnd ‘ 𝐺 )  ∩  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 18 | 
							
								
							 | 
							mreacs | 
							⊢ ( 𝐵  ∈  V  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mp1i | 
							⊢ ( 𝐺  ∈  Grp  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							grpmnd | 
							⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd )  | 
						
						
							| 21 | 
							
								1
							 | 
							submacs | 
							⊢ ( 𝐺  ∈  Mnd  →  ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 23 | 
							
								1 2
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								23
							 | 
							ralrimiva | 
							⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								
							 | 
							acsfn1 | 
							⊢ ( ( 𝐵  ∈  V  ∧  ∀ 𝑥  ∈  𝐵 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 )  →  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 }  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 26 | 
							
								17 24 25
							 | 
							sylancr | 
							⊢ ( 𝐺  ∈  Grp  →  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 }  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							mreincl | 
							⊢ ( ( ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 )  ∧  ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 )  ∧  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 }  ∈  ( ACS ‘ 𝐵 ) )  →  ( ( SubMnd ‘ 𝐺 )  ∩  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 28 | 
							
								19 22 26 27
							 | 
							syl3anc | 
							⊢ ( 𝐺  ∈  Grp  →  ( ( SubMnd ‘ 𝐺 )  ∩  { 𝑦  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑦 } )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 29 | 
							
								16 28
							 | 
							eqeltrd | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  |