Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subggrp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
Assertion | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
3 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
4 | 1 2 | ressbas2 | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
5 | 3 4 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |