Step |
Hyp |
Ref |
Expression |
1 |
|
subgcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) |
3 |
2
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
5 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
6 |
2
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
8 |
5 7
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
9 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) |
10 |
9 7
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) |
12 |
|
eqid |
⊢ ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) |
13 |
11 12
|
grpcl |
⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Grp ∧ 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → ( 𝑋 ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
14 |
4 8 10 13
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
15 |
2 1
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
17 |
16
|
oveqd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑌 ) ) |
18 |
14 17 7
|
3eltr4d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |