Metamath Proof Explorer


Theorem subgcl

Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subgcl.p + = ( +g𝐺 )
Assertion subgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 subgcl.p + = ( +g𝐺 )
2 eqid ( 𝐺s 𝑆 ) = ( 𝐺s 𝑆 )
3 2 subggrp ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺s 𝑆 ) ∈ Grp )
4 3 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝐺s 𝑆 ) ∈ Grp )
5 simp2 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑋𝑆 )
6 2 subgbas ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺s 𝑆 ) ) )
7 6 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑆 = ( Base ‘ ( 𝐺s 𝑆 ) ) )
8 5 7 eleqtrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑋 ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) )
9 simp3 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑌𝑆 )
10 9 7 eleqtrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑌 ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) )
11 eqid ( Base ‘ ( 𝐺s 𝑆 ) ) = ( Base ‘ ( 𝐺s 𝑆 ) )
12 eqid ( +g ‘ ( 𝐺s 𝑆 ) ) = ( +g ‘ ( 𝐺s 𝑆 ) )
13 11 12 grpcl ( ( ( 𝐺s 𝑆 ) ∈ Grp ∧ 𝑋 ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) ) → ( 𝑋 ( +g ‘ ( 𝐺s 𝑆 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) )
14 4 8 10 13 syl3anc ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 ( +g ‘ ( 𝐺s 𝑆 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝐺s 𝑆 ) ) )
15 2 1 ressplusg ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → + = ( +g ‘ ( 𝐺s 𝑆 ) ) )
16 15 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → + = ( +g ‘ ( 𝐺s 𝑆 ) ) )
17 16 oveqd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝐺s 𝑆 ) ) 𝑌 ) )
18 14 17 7 3eltr4d ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )