Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
subgdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
subgdisj.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
4 |
|
subgdisj.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
subgdisj.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
subgdisj.i |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
7 |
|
subgdisj.s |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
8 |
|
subgdisj.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
9 |
|
subgdisj.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
10 |
|
subgdisj.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
11 |
|
subgdisj.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
12 |
|
subgdisj.j |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
13 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
14 |
13
|
subgsubcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
15 |
4 8 9 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
16 |
7 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ) |
17 |
1 3
|
cntzi |
⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐵 ∈ 𝑈 ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
18 |
16 10 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
19 |
12 18
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
20 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
23 |
22
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
24 |
4 23
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
25 |
24 8
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
26 |
22
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
28 |
27 10
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
29 |
22 1
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
30 |
21 25 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
31 |
24 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐺 ) ) |
32 |
22 1 13
|
grpsubsub4 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
33 |
21 30 28 31 32
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
34 |
12 30
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ) |
35 |
22 1 13
|
grpsubsub4 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
36 |
21 34 31 28 35
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
37 |
19 33 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) |
38 |
22 1 13
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
39 |
21 25 28 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
40 |
39
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ) |
41 |
1 3
|
cntzi |
⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐷 ∈ 𝑈 ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
42 |
16 11 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) ) |
44 |
27 11
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ 𝐺 ) ) |
45 |
22 1 13
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
46 |
21 44 31 45
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
47 |
43 46
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
49 |
37 40 48
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
50 |
13
|
subgsubcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐷 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
51 |
5 11 10 50
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
52 |
49 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑈 ) |
53 |
15 52
|
elind |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ ( 𝑇 ∩ 𝑈 ) ) |
54 |
53 6
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } ) |
55 |
|
elsni |
⊢ ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) |
56 |
54 55
|
syl |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) |
57 |
22 2 13
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
58 |
21 25 31 57
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
59 |
56 58
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |