| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 2 |
|
subgdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
subgdisj.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 4 |
|
subgdisj.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
subgdisj.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
subgdisj.i |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 7 |
|
subgdisj.s |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 8 |
|
subgdisj.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
| 9 |
|
subgdisj.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
| 10 |
|
subgdisj.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 11 |
|
subgdisj.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 12 |
|
subgdisj.j |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 13 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 14 |
13
|
subgsubcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
| 15 |
4 8 9 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
| 16 |
7 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 17 |
1 3
|
cntzi |
⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐵 ∈ 𝑈 ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 18 |
16 10 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 19 |
12 18
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 20 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 23 |
22
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 24 |
4 23
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 |
24 8
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 26 |
22
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 |
27 10
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 29 |
22 1
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
| 30 |
21 25 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
| 31 |
24 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐺 ) ) |
| 32 |
22 1 13
|
grpsubsub4 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
| 33 |
21 30 28 31 32
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
| 34 |
12 30
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ) |
| 35 |
22 1 13
|
grpsubsub4 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 36 |
21 34 31 28 35
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 37 |
19 33 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 38 |
22 1 13
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
| 39 |
21 25 28 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ) |
| 41 |
1 3
|
cntzi |
⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐷 ∈ 𝑈 ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 42 |
16 11 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) ) |
| 44 |
27 11
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ 𝐺 ) ) |
| 45 |
22 1 13
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 46 |
21 44 31 45
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 47 |
43 46
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 49 |
37 40 48
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 50 |
13
|
subgsubcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐷 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
| 51 |
5 11 10 50
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
| 52 |
49 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑈 ) |
| 53 |
15 52
|
elind |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ ( 𝑇 ∩ 𝑈 ) ) |
| 54 |
53 6
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } ) |
| 55 |
|
elsni |
⊢ ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) |
| 57 |
22 2 13
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
| 58 |
21 25 31 57
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
| 59 |
56 58
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |