| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 2 |
|
subgdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
subgdisj.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 4 |
|
subgdisj.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
subgdisj.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
subgdisj.i |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 7 |
|
subgdisj.s |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 8 |
|
subgdisj.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
| 9 |
|
subgdisj.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
| 10 |
|
subgdisj.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 11 |
|
subgdisj.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐴 ∈ 𝑇 ) |
| 17 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐶 ∈ 𝑇 ) |
| 18 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐵 ∈ 𝑈 ) |
| 19 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐷 ∈ 𝑈 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 21 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐴 = 𝐶 ) |
| 22 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj2 |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐵 = 𝐷 ) |
| 23 |
21 22
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 25 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 26 |
24 25
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |