Step |
Hyp |
Ref |
Expression |
1 |
|
subgdprd.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
reldmdprd |
⊢ Rel dom DProd |
3 |
2
|
brrelex2i |
⊢ ( 𝐻 dom DProd 𝑆 → 𝑆 ∈ V ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 dom DProd 𝑆 → 𝑆 ∈ V ) ) |
5 |
2
|
brrelex2i |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
6 |
5
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) → 𝑆 ∈ V ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) → 𝑆 ∈ V ) ) |
8 |
|
ffvelrn |
⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
9 |
8
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
11 |
10
|
subgss |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐻 ) ) |
12 |
9 11
|
syl |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐻 ) ) |
13 |
1
|
subgbas |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
15 |
12 14
|
sseqtrrd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) |
16 |
15
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) |
19 |
|
eldifi |
⊢ ( 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) → 𝑦 ∈ dom 𝑆 ) |
20 |
19
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝑦 ∈ dom 𝑆 ) |
21 |
18 20
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
22 |
10
|
subgss |
⊢ ( ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐻 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐻 ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐻 ) ) |
24 |
23 14
|
sseqtrrd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ 𝐴 ) |
25 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
26 |
|
eqid |
⊢ ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 ) |
27 |
1 25 26
|
resscntz |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑦 ) ⊆ 𝐴 ) → ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) = ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) |
28 |
17 24 27
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) = ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) |
29 |
28
|
sseq2d |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) ) |
30 |
|
ssin |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) |
31 |
29 30
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
32 |
16 31
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
33 |
32
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
34 |
33
|
ralbidva |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
35 |
|
subgrcl |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐺 ∈ Grp ) |
37 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
38 |
37
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
39 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
40 |
36 38 39
|
3syl |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
41 |
1
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐻 ∈ Grp ) |
43 |
10
|
subgacs |
⊢ ( 𝐻 ∈ Grp → ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) ) |
44 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) |
45 |
42 43 44
|
3syl |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) |
46 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) |
47 |
|
imassrn |
⊢ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 |
48 |
|
frn |
⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) |
50 |
47 49
|
sstrid |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( SubGrp ‘ 𝐻 ) ) |
51 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) → ( SubGrp ‘ 𝐻 ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) |
52 |
45 51
|
syl |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐻 ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) |
53 |
50 52
|
sstrd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) |
54 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ↔ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) |
55 |
53 54
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) |
56 |
45 46 55
|
mrcssidd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
57 |
46
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
58 |
45 55 57
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
59 |
1
|
subsubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
61 |
58 60
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) |
62 |
61
|
simpld |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
63 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
64 |
63
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
65 |
40 56 62 64
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
66 |
13
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
67 |
55 66
|
sseqtrrd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝐴 ) |
68 |
37
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
70 |
67 69
|
sstrd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
71 |
40 63 70
|
mrcssidd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
72 |
63
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
73 |
40 70 72
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
74 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
75 |
63
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝐴 ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) |
76 |
40 67 74 75
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) |
77 |
1
|
subsubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
79 |
73 76 78
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
80 |
46
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
81 |
45 71 79 80
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
82 |
65 81
|
eqssd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
83 |
82
|
ineq2d |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
84 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
85 |
1 84
|
subg0 |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
87 |
86
|
sneqd |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → { ( 0g ‘ 𝐺 ) } = { ( 0g ‘ 𝐻 ) } ) |
88 |
83 87
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ↔ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) |
89 |
34 88
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ↔ ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) |
90 |
89
|
ralbidva |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) → ( ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ↔ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) |
91 |
90
|
pm5.32da |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
92 |
1
|
subsubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) ) |
93 |
|
elin |
⊢ ( 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝒫 𝐴 ) ) |
94 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
95 |
94
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) |
96 |
93 95
|
bitri |
⊢ ( 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) |
97 |
92 96
|
bitr4di |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) ) |
98 |
97
|
eqrdv |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( SubGrp ‘ 𝐻 ) = ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) |
99 |
98
|
sseq2d |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ↔ ran 𝑆 ⊆ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) ) |
100 |
|
ssin |
⊢ ( ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ran 𝑆 ⊆ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) |
101 |
99 100
|
bitr4di |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ↔ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
102 |
101
|
anbi2d |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) ) |
103 |
|
df-f |
⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) ) |
104 |
|
df-f |
⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ) |
105 |
104
|
anbi1i |
⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) |
106 |
|
anass |
⊢ ( ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
107 |
105 106
|
bitri |
⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
108 |
102 103 107
|
3bitr4g |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
109 |
108
|
anbi1d |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
110 |
91 109
|
bitr3d |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
112 |
|
dmexg |
⊢ ( 𝑆 ∈ V → dom 𝑆 ∈ V ) |
113 |
112
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → dom 𝑆 ∈ V ) |
114 |
|
eqidd |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → dom 𝑆 = dom 𝑆 ) |
115 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → 𝐻 ∈ Grp ) |
116 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
117 |
26 116 46
|
dmdprd |
⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐻 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
118 |
|
3anass |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( 𝐻 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
119 |
117 118
|
bitrdi |
⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐻 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) ) |
120 |
119
|
baibd |
⊢ ( ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) ∧ 𝐻 ∈ Grp ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
121 |
113 114 115 120
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
122 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → 𝐺 ∈ Grp ) |
123 |
25 84 63
|
dmdprd |
⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
124 |
|
3anass |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
125 |
123 124
|
bitrdi |
⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) ) |
126 |
125
|
baibd |
⊢ ( ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) ∧ 𝐺 ∈ Grp ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
127 |
113 114 122 126
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
128 |
127
|
anbi1d |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
129 |
|
an32 |
⊢ ( ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
130 |
128 129
|
bitrdi |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
131 |
111 121 130
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
132 |
131
|
ex |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ V → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) ) |
133 |
4 7 132
|
pm5.21ndd |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |