Metamath Proof Explorer


Theorem subge02

Description: Nonnegative subtraction. (Contributed by NM, 27-Jul-2005)

Ref Expression
Assertion subge02 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴𝐵 ) ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 addge01 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵𝐴 ≤ ( 𝐴 + 𝐵 ) ) )
2 lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐴𝐴 ≤ ( 𝐴 + 𝐵 ) ) )
3 2 3anidm13 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐴𝐴 ≤ ( 𝐴 + 𝐵 ) ) )
4 1 3 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴𝐵 ) ≤ 𝐴 ) )