Description: Nonnegative subtraction. (Contributed by NM, 27-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subge02 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 − 𝐵 ) ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addge01 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) | |
| 2 | lesubadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) | |
| 3 | 2 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) |
| 4 | 1 3 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 − 𝐵 ) ≤ 𝐴 ) ) |