Metamath Proof Explorer
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
Assertion |
subge02d |
⊢ ( 𝜑 → ( 0 ≤ 𝐵 ↔ ( 𝐴 − 𝐵 ) ≤ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
subge02 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 − 𝐵 ) ≤ 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ 𝐵 ↔ ( 𝐴 − 𝐵 ) ≤ 𝐴 ) ) |