Metamath Proof Explorer
		
		
		
		Description:  Nonnegative subtraction.  (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						leidd.1 | 
						⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
					
					
						 | 
						 | 
						ltnegd.2 | 
						⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
					
				
					 | 
					Assertion | 
					subge02d | 
					⊢  ( 𝜑  →  ( 0  ≤  𝐵  ↔  ( 𝐴  −  𝐵 )  ≤  𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							leidd.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							ltnegd.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							subge02 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  ≤  𝐵  ↔  ( 𝐴  −  𝐵 )  ≤  𝐴 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 0  ≤  𝐵  ↔  ( 𝐴  −  𝐵 )  ≤  𝐴 ) )  |