Metamath Proof Explorer


Theorem subge0i

Description: Nonnegative subtraction. (Contributed by NM, 13-Aug-2000)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion subge0i ( 0 ≤ ( 𝐴𝐵 ) ↔ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 subge0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴𝐵 ) ↔ 𝐵𝐴 ) )
4 1 2 3 mp2an ( 0 ≤ ( 𝐴𝐵 ) ↔ 𝐵𝐴 )