| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgga.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | subgga.2 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | subgga.3 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑌 ) | 
						
							| 4 |  | subgga.4 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑌 ,  𝑦  ∈  𝑋  ↦  ( 𝑥  +  𝑦 ) ) | 
						
							| 5 | 3 | subggrp | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ∈  Grp ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 7 | 5 6 | jctir | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐻  ∈  Grp  ∧  𝑋  ∈  V ) ) | 
						
							| 8 |  | subgrcl | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 10 | 1 | subgss | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑋 ) | 
						
							| 12 | 11 | adantrr | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 13 |  | simprr | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 14 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  +  𝑦 )  ∈  𝑋 ) | 
						
							| 15 | 9 12 13 14 | syl3anc | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑋 ) | 
						
							| 16 | 15 | ralrimivva | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑋 ( 𝑥  +  𝑦 )  ∈  𝑋 ) | 
						
							| 17 | 4 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑋 ( 𝑥  +  𝑦 )  ∈  𝑋  ↔  𝐹 : ( 𝑌  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐹 : ( 𝑌  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 19 | 3 | subgbas | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝑌  =  ( Base ‘ 𝐻 ) ) | 
						
							| 20 | 19 | xpeq1d | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑌  ×  𝑋 )  =  ( ( Base ‘ 𝐻 )  ×  𝑋 ) ) | 
						
							| 21 | 20 | feq2d | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐹 : ( 𝑌  ×  𝑋 ) ⟶ 𝑋  ↔  𝐹 : ( ( Base ‘ 𝐻 )  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 22 | 18 21 | mpbid | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐹 : ( ( Base ‘ 𝐻 )  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 24 | 23 | subg0cl | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑌 ) | 
						
							| 25 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑢 )  →  ( 𝑥  +  𝑦 )  =  ( ( 0g ‘ 𝐺 )  +  𝑢 ) ) | 
						
							| 26 |  | ovex | ⊢ ( ( 0g ‘ 𝐺 )  +  𝑢 )  ∈  V | 
						
							| 27 | 25 4 26 | ovmpoa | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝑌  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 )  =  ( ( 0g ‘ 𝐺 )  +  𝑢 ) ) | 
						
							| 28 | 24 27 | sylan | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 )  =  ( ( 0g ‘ 𝐺 )  +  𝑢 ) ) | 
						
							| 29 | 3 23 | subg0 | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 )  =  ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 )  =  ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) ) | 
						
							| 32 | 1 2 23 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑢 )  =  𝑢 ) | 
						
							| 33 | 8 32 | sylan | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑢 )  =  𝑢 ) | 
						
							| 34 | 28 31 33 | 3eqtr3d | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 )  =  𝑢 ) | 
						
							| 35 | 8 | ad2antrr | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝐺  ∈  Grp ) | 
						
							| 36 | 10 | ad2antrr | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 37 |  | simprl | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑣  ∈  𝑌 ) | 
						
							| 38 | 36 37 | sseldd | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑣  ∈  𝑋 ) | 
						
							| 39 |  | simprr | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑤  ∈  𝑌 ) | 
						
							| 40 | 36 39 | sseldd | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 41 |  | simplr | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  𝑢  ∈  𝑋 ) | 
						
							| 42 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑣  ∈  𝑋  ∧  𝑤  ∈  𝑋  ∧  𝑢  ∈  𝑋 ) )  →  ( ( 𝑣  +  𝑤 )  +  𝑢 )  =  ( 𝑣  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 43 | 35 38 40 41 42 | syl13anc | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑣  +  𝑤 )  +  𝑢 )  =  ( 𝑣  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 44 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑤  ∈  𝑋  ∧  𝑢  ∈  𝑋 )  →  ( 𝑤  +  𝑢 )  ∈  𝑋 ) | 
						
							| 45 | 35 40 41 44 | syl3anc | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑤  +  𝑢 )  ∈  𝑋 ) | 
						
							| 46 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  ( 𝑤  +  𝑢 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑣  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 47 |  | ovex | ⊢ ( 𝑣  +  ( 𝑤  +  𝑢 ) )  ∈  V | 
						
							| 48 | 46 4 47 | ovmpoa | ⊢ ( ( 𝑣  ∈  𝑌  ∧  ( 𝑤  +  𝑢 )  ∈  𝑋 )  →  ( 𝑣 𝐹 ( 𝑤  +  𝑢 ) )  =  ( 𝑣  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 49 | 37 45 48 | syl2anc | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑣 𝐹 ( 𝑤  +  𝑢 ) )  =  ( 𝑣  +  ( 𝑤  +  𝑢 ) ) ) | 
						
							| 50 | 43 49 | eqtr4d | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑣  +  𝑤 )  +  𝑢 )  =  ( 𝑣 𝐹 ( 𝑤  +  𝑢 ) ) ) | 
						
							| 51 | 2 | subgcl | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 )  →  ( 𝑣  +  𝑤 )  ∈  𝑌 ) | 
						
							| 52 | 51 | 3expb | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑣  +  𝑤 )  ∈  𝑌 ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑣  +  𝑤 )  ∈  𝑌 ) | 
						
							| 54 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 𝑣  +  𝑤 )  ∧  𝑦  =  𝑢 )  →  ( 𝑥  +  𝑦 )  =  ( ( 𝑣  +  𝑤 )  +  𝑢 ) ) | 
						
							| 55 |  | ovex | ⊢ ( ( 𝑣  +  𝑤 )  +  𝑢 )  ∈  V | 
						
							| 56 | 54 4 55 | ovmpoa | ⊢ ( ( ( 𝑣  +  𝑤 )  ∈  𝑌  ∧  𝑢  ∈  𝑋 )  →  ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( ( 𝑣  +  𝑤 )  +  𝑢 ) ) | 
						
							| 57 | 53 41 56 | syl2anc | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( ( 𝑣  +  𝑤 )  +  𝑢 ) ) | 
						
							| 58 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑤  ∧  𝑦  =  𝑢 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑤  +  𝑢 ) ) | 
						
							| 59 |  | ovex | ⊢ ( 𝑤  +  𝑢 )  ∈  V | 
						
							| 60 | 58 4 59 | ovmpoa | ⊢ ( ( 𝑤  ∈  𝑌  ∧  𝑢  ∈  𝑋 )  →  ( 𝑤 𝐹 𝑢 )  =  ( 𝑤  +  𝑢 ) ) | 
						
							| 61 | 39 41 60 | syl2anc | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑤 𝐹 𝑢 )  =  ( 𝑤  +  𝑢 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) )  =  ( 𝑣 𝐹 ( 𝑤  +  𝑢 ) ) ) | 
						
							| 63 | 50 57 62 | 3eqtr4d | ⊢ ( ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  ∧  ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) | 
						
							| 64 | 63 | ralrimivva | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ∀ 𝑣  ∈  𝑌 ∀ 𝑤  ∈  𝑌 ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) | 
						
							| 65 | 3 2 | ressplusg | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 66 | 65 | oveqd | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑣  +  𝑤 )  =  ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) )  ↔  ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) | 
						
							| 69 | 19 68 | raleqbidv | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( ∀ 𝑤  ∈  𝑌 ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) )  ↔  ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) | 
						
							| 70 | 19 69 | raleqbidv | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( ∀ 𝑣  ∈  𝑌 ∀ 𝑤  ∈  𝑌 ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) )  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) | 
						
							| 71 | 70 | biimpa | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑣  ∈  𝑌 ∀ 𝑤  ∈  𝑌 ( ( 𝑣  +  𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) )  →  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) | 
						
							| 72 | 64 71 | syldan | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) | 
						
							| 73 | 34 72 | jca | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑢  ∈  𝑋 )  →  ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 )  =  𝑢  ∧  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) | 
						
							| 74 | 73 | ralrimiva | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ∀ 𝑢  ∈  𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 )  =  𝑢  ∧  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) | 
						
							| 75 | 22 74 | jca | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐹 : ( ( Base ‘ 𝐻 )  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑢  ∈  𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 )  =  𝑢  ∧  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) ) | 
						
							| 76 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 77 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 78 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 79 | 76 77 78 | isga | ⊢ ( 𝐹  ∈  ( 𝐻  GrpAct  𝑋 )  ↔  ( ( 𝐻  ∈  Grp  ∧  𝑋  ∈  V )  ∧  ( 𝐹 : ( ( Base ‘ 𝐻 )  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑢  ∈  𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 )  =  𝑢  ∧  ∀ 𝑣  ∈  ( Base ‘ 𝐻 ) ∀ 𝑤  ∈  ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 )  =  ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) ) ) | 
						
							| 80 | 7 75 79 | sylanbrc | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐹  ∈  ( 𝐻  GrpAct  𝑋 ) ) |