Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subggrp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
Assertion | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
3 | 2 | issubg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
4 | 3 | simp3bi | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
5 | 1 4 | eqeltrid | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |