Metamath Proof Explorer


Theorem subggrp

Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subggrp.h 𝐻 = ( 𝐺s 𝑆 )
Assertion subggrp ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )

Proof

Step Hyp Ref Expression
1 subggrp.h 𝐻 = ( 𝐺s 𝑆 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 2 issubg ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺s 𝑆 ) ∈ Grp ) )
4 3 simp3bi ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺s 𝑆 ) ∈ Grp )
5 1 4 eqeltrid ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )