Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | subgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 3 | ssidd | ⊢ ( 𝐺 ∈ Grp → 𝐵 ⊆ 𝐵 ) | |
| 4 | 1 | ressid | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) | 
| 5 | 4 2 | eqeltrd | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) ∈ Grp ) | 
| 6 | 1 | issubg | ⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝐵 ) ∈ Grp ) ) | 
| 7 | 2 3 5 6 | syl3anbrc | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |