Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
Assertion | subgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
3 | ssidd | ⊢ ( 𝐺 ∈ Grp → 𝐵 ⊆ 𝐵 ) | |
4 | 1 | ressid | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
5 | 4 2 | eqeltrd | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) ∈ Grp ) |
6 | 1 | issubg | ⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝐵 ) ∈ Grp ) ) |
7 | 2 3 5 6 | syl3anbrc | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |