| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intssuni | ⊢ ( 𝑆  ≠  ∅  →  ∩  𝑆  ⊆  ∪  𝑆 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ⊆  ∪  𝑆 ) | 
						
							| 3 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 | 3 | adantlr | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 6 | 5 | subgss | ⊢ ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  →  𝑔  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∀ 𝑔  ∈  𝑆 𝑔  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | unissb | ⊢ ( ∪  𝑆  ⊆  ( Base ‘ 𝐺 )  ↔  ∀ 𝑔  ∈  𝑆 𝑔  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∪  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 2 10 | sstrd | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 13 | 12 | subg0cl | ⊢ ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑔 ) | 
						
							| 14 | 4 13 | syl | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑔  ∈  𝑆 )  →  ( 0g ‘ 𝐺 )  ∈  𝑔 ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∀ 𝑔  ∈  𝑆 ( 0g ‘ 𝐺 )  ∈  𝑔 ) | 
						
							| 16 |  | fvex | ⊢ ( 0g ‘ 𝐺 )  ∈  V | 
						
							| 17 | 16 | elint2 | ⊢ ( ( 0g ‘ 𝐺 )  ∈  ∩  𝑆  ↔  ∀ 𝑔  ∈  𝑆 ( 0g ‘ 𝐺 )  ∈  𝑔 ) | 
						
							| 18 | 15 17 | sylibr | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ( 0g ‘ 𝐺 )  ∈  ∩  𝑆 ) | 
						
							| 19 | 18 | ne0d | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ≠  ∅ ) | 
						
							| 20 | 4 | adantlr | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  𝑥  ∈  ∩  𝑆 ) | 
						
							| 22 |  | elinti | ⊢ ( 𝑥  ∈  ∩  𝑆  →  ( 𝑔  ∈  𝑆  →  𝑥  ∈  𝑔 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝑥  ∈  ∩  𝑆  ∧  𝑔  ∈  𝑆 )  →  𝑥  ∈  𝑔 ) | 
						
							| 24 | 21 23 | sylan | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑔  ∈  𝑆 )  →  𝑥  ∈  𝑔 ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  𝑦  ∈  ∩  𝑆 ) | 
						
							| 26 |  | elinti | ⊢ ( 𝑦  ∈  ∩  𝑆  →  ( 𝑔  ∈  𝑆  →  𝑦  ∈  𝑔 ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝑦  ∈  ∩  𝑆  ∧  𝑔  ∈  𝑆 )  →  𝑦  ∈  𝑔 ) | 
						
							| 28 | 25 27 | sylan | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑔  ∈  𝑆 )  →  𝑦  ∈  𝑔 ) | 
						
							| 29 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 30 | 29 | subgcl | ⊢ ( ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑔  ∧  𝑦  ∈  𝑔 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑔 ) | 
						
							| 31 | 20 24 28 30 | syl3anc | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑔 ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  ∀ 𝑔  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑔 ) | 
						
							| 33 |  | ovex | ⊢ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  V | 
						
							| 34 | 33 | elint2 | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆  ↔  ∀ 𝑔  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑔 ) | 
						
							| 35 | 32 34 | sylibr | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆 ) | 
						
							| 36 | 35 | anassrs | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  ∧  𝑦  ∈  ∩  𝑆 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆 ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  →  ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆 ) | 
						
							| 38 | 4 | adantlr | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 39 | 23 | adantll | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  ∧  𝑔  ∈  𝑆 )  →  𝑥  ∈  𝑔 ) | 
						
							| 40 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 41 | 40 | subginvcl | ⊢ ( ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑔 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑔 ) | 
						
							| 42 | 38 39 41 | syl2anc | ⊢ ( ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  ∧  𝑔  ∈  𝑆 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑔 ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  →  ∀ 𝑔  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑔 ) | 
						
							| 44 |  | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  V | 
						
							| 45 | 44 | elint2 | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆  ↔  ∀ 𝑔  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝑔 ) | 
						
							| 46 | 43 45 | sylibr | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆 ) | 
						
							| 47 | 37 46 | jca | ⊢ ( ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  ∧  𝑥  ∈  ∩  𝑆 )  →  ( ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆 ) ) | 
						
							| 48 | 47 | ralrimiva | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∀ 𝑥  ∈  ∩  𝑆 ( ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆 ) ) | 
						
							| 49 |  | ssn0 | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ( SubGrp ‘ 𝐺 )  ≠  ∅ ) | 
						
							| 50 |  | n0 | ⊢ ( ( SubGrp ‘ 𝐺 )  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 51 |  | subgrcl | ⊢ ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 52 | 51 | exlimiv | ⊢ ( ∃ 𝑔 𝑔  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 53 | 50 52 | sylbi | ⊢ ( ( SubGrp ‘ 𝐺 )  ≠  ∅  →  𝐺  ∈  Grp ) | 
						
							| 54 | 5 29 40 | issubg2 | ⊢ ( 𝐺  ∈  Grp  →  ( ∩  𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( ∩  𝑆  ⊆  ( Base ‘ 𝐺 )  ∧  ∩  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  ∩  𝑆 ( ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆 ) ) ) ) | 
						
							| 55 | 49 53 54 | 3syl | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ( ∩  𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( ∩  𝑆  ⊆  ( Base ‘ 𝐺 )  ∧  ∩  𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  ∩  𝑆 ( ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  ∩  𝑆  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  ∩  𝑆 ) ) ) ) | 
						
							| 56 | 11 19 48 55 | mpbir3and | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) |