Step |
Hyp |
Ref |
Expression |
1 |
|
subginvcl.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) |
3 |
2
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
4 |
|
simpr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
5 |
2
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
7 |
4 6
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) |
9 |
|
eqid |
⊢ ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) = ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) |
10 |
8 9
|
grpinvcl |
⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Grp ∧ 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
11 |
3 7 10
|
syl2an2r |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
12 |
2 1 9
|
subginv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) = ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ) |
13 |
11 12 6
|
3eltr4d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |