Step |
Hyp |
Ref |
Expression |
1 |
|
subglsm.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
|
subglsm.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
subglsm.a |
⊢ 𝐴 = ( LSSum ‘ 𝐻 ) |
4 |
|
simp11 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
1 5
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
7 |
4 6
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
8 |
7
|
oveqd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
9 |
8
|
mpoeq3dva |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
10 |
9
|
rneqd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
11 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝐺 ∈ Grp ) |
13 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
15 |
14
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
17 |
13 16
|
sstrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
18 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ 𝑆 ) |
19 |
18 16
|
sstrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
20 |
14 5 2
|
lsmvalx |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
21 |
12 17 19 20
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
22 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝐻 ∈ Grp ) |
24 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
26 |
13 25
|
sseqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐻 ) ) |
27 |
18 25
|
sseqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐻 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
29 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
30 |
28 29 3
|
lsmvalx |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐻 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐻 ) ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
31 |
23 26 27 30
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
32 |
10 21 31
|
3eqtr4d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑇 𝐴 𝑈 ) ) |