Metamath Proof Explorer


Theorem subgmulgcl

Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis subgmulgcl.t · = ( .g𝐺 )
Assertion subgmulgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 subgmulgcl.t · = ( .g𝐺 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
5 2 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
6 3 subgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑆𝑦𝑆 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑆 )
7 eqid ( 0g𝐺 ) = ( 0g𝐺 )
8 7 subg0cl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝑆 )
9 eqid ( invg𝐺 ) = ( invg𝐺 )
10 9 subginvcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑆 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑆 )
11 2 1 3 4 5 6 7 8 9 10 mulgsubcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 )